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SUMMARY 
We further develop a new singular finite element method, the integrated singular basis function method 
(ISBFM), for the solution of Newtonian flow problems with stress singularities. The ISBFM is based on the 
direct subtraction of the leading local solution terms from the governing equations and boundary conditions 
of the original problem, followed by a double integration by parts applied to those integrals with singular 
contributions. The method is applied to the stick-slip and the die-swell problems and improves the accuracy 
of the numerical results in both cases. In the case of the die-swell problem it considerably accelerates the 
convergence of the free surface profile with mesh refinement. The advantages and disadvantages of the 
ISBFM when compared to other singular methods are also discussed. 
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1. INTRODUCTION 

In this paper we adapt a new singular finite element method (previously used for Laplace’s 
equation’) to solve Newtonian flow problems with stress singularities. The accuracy and the rate 
of convergence of ordinary finite element methods generally become poor and very often 
unacceptable when a singularity is present.2i The inaccuracies caused by the singularity often 
appear as spurious stress  oscillation^.^ Mesh refinement, although commonly used, does not 
always adequately capture the sudden changes in the solution field and resolve the accuracy 
difficulties. Inaccuracies which propagate into the global solution are typically more serious. In 
the die-swell problem, for example, the position of the free surface depends on the mesh 
refinement around the singularity.’ A coarser mesh gives more swelling and standard numerical 
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schemes diverge if very small elements are used near the singular point. The contamination of the 
global solution becomes more pronounced in non-Newtonian flows, and in fact the inability to 
obtain results for highly viscoelastic fluids is due partially to the presence of a 

Generally speaking, singularities may often be considered to be artefacts introduced by the 
idealization of the physical problem or by the use of mathematical models unable to describe the 
physical phenomena over the entire domain (as when the continuum assumption breaks down 
near the walls). In some cases the singularity can be removed or at least alleviated by modifying 
the mathematical problem (by smoothing a comer in the geometry or by adding slip in the 
boundary conditions*). Nevertheless, the removal or the alleviation of the singularity is not 
always feasible or desirable, either because the singularity and/or the singular coefficients describe 
the global physics of the problem (as is the case in fracture mechanics and in dendrite formation, 
for example) or because modifications of the mathematical problem would introduce over- 
whelming complications. 

When modification of the mathematical problem is not possible or desirable, an alternate 
strategy is to modify the numerical method. The exact form of the singularity is very often known 
from local analyses. The analyses of Michael' and Moffattl' provide the local solutions for 
Stokes flow near a corner formed by two walls and near the intersection of a wall and a flat free 
surface at any angle. Because inertial terms are negligible near walls, the leading terms of the local 
solution are still valid for non-zero Reynolds number flows. Holstein and Paddon" showed that 
the first three terms of the Stokesian and inertial corner flows share the same functional form. 
These local solutions are also valid in some viscoelastic flows whenever the Newtonian part of the 
stress tensor prevails near the singularity. 

The incorporation of the functional form of the local solution into the numerical scheme is the 
basic characteristic of the various singular approaches implemented in a variety of numerical 
methods, such as finite elements, finite differences and boundary elements. As far as finite 
elements are concerned, one can distinguish two main categories of  method^:^ 

(1) the singular Jinite element method (SFEM), in which special elements incorporating at least 
the radial form of the local solution (by means of special basis functions or singular 
geometric transformations) are employed in a small region around the singularity while 
ordinary elements are used in the rest of the domain 

(2) the singular basis function method (SBFM), in which a set of supplementary basis functions 
chosen to reproduce the leading terms of the singularity solution is added to the ordinary 
finite element solution expansion. 

In two previous  paper^^.^ we used the SFEM to solve the stick-slip, the die-swell and the 4: 1 
sudden-expansion problems. It was shown that the SFEM eliminates the spurious oscillations 
characterizing the stresses obtained with ordinary finite elements. In the case of the die-swell 
problem the SFEM considerably accelerates the convergence of the free surface profile with mesh 
refinement.s As noted in Reference 4, the main drawback of the SFEM is the inability to refine the 
mesh extensively. With mesh refinement the singular elements become smaller in size and, 
consequently, the size of the region over which the singularity is given special attention is reduced. 
This drawback is not encountered in the SBFM owing to the fact that the singular functions are 
defined independently of the refinement of the underlying mesh. 

In another study12 we solved the stick-slip problem using an SBFM in which the singular basis 
functions were taken equal to the leading terms of the local solution multiplied by a blending 
function which causes the basis functions to vanish far from the singularity. We call this method 
the blended singular basis function method or BSBFM. The BSBFM does not introduce any 
additional boundary terms in the finite element formulation. The two main disadvantages include 
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(1) the inability to obtain good estimates for the singular coefficients (except for the first one) 
because the blending function creates extra terms of the same order and (2) the need for high- 
order integration near the singular point.1s3 To avoid these difficulties, we have recently 
developed the integrated singular basis function method (ISBFM) for Laplace's equation.' The 
main characteristics of the ISBFM are the following. 

1. The singular functions and the leading terms of the local asymptotic solution have the same 
functional form. This is useful if accurate estimates of the singular coefficients are desirable. 

2. The singular functions are directly subtracted from the original problem formulation to give 
a modified problem with the regular (smooth) part of the solution and the singular 
coefficients as unknowns. 

3. A double integration by parts is applied to those integrals with singular contributions to 
reduce them to boundary terms to be evaluated far from the singular point. 

4. Lagrange multipliers are used to impose the originally essential boundary conditions. 

As shown in Reference 1, the ISBFM eliminates the need for high-order integration, improves the 
overall accuracy and yields very accurate estimates for the singular coefficients. It also accelerates 
the convergence of the norm of the solution with regular mesh refinement (in accordance with 
theoretical error estimates) and the solution norm converges rapidly as the number of singular 
functions is increased. 

The objective of this work is to implement the ISBFM for fluid mechanics problems to make 
comparisons with ordinary finite elements and the SFEM. Both the planar stick-slip and die- 
swell problems are considered here. The numerical results show that, when rather coarse meshes 
are used, the ISBFM and the SFEM give essentially the same results. Compared to ordinary finite 
element techniques, both methods improve the accuracy and accelerate the convergence of the 
free surface profile with mesh refinement in the case of the die-swell problem. However, the 
ISBFM can also be used with extensively refined meshes and calculates the singular coefficients 
directly. 

The stick-slip problem is presented in detail in Section 2. Section 3 is devoted to the die-swell 
problem and Section 4 summarizes the conclusions. 

2. THE STICK-SLIP PROBLEM 

The two-dimensional geometry, governing equations and boundary conditions for the stick-slip 
problem are depicted in Figure 1. Assuming steady, incompressible flow and neglecting the inertia 

u = o ,  v = o  
~//////////////////////////A Try = 0, v = 0 

1 

V * T  = 0 

v .u = 0 

T,, = 0 

T,, = 0 

~ 

z=-3  X r = 3  

Try = 0, w = 0 

Figure 1. The stickslip problem 
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and gravity effects, the momentum and continuity equations become 

V.T = 0, (1) 

v - u  = 0. (2) 
Here T = -PI + Vu + (VU)~ is the Newtonian stress tensor, u is the velocity vector, p is the 
pressure and I is the unit tensor. The stress components and the pressure are measured in units of 
p U / H ,  where p is the viscosity, U is the mean velocity in the channel and H is the channel half- 
width. Velocity components and lengths are scaled by II and H respectively. 

The local solution around the exit of the die is a special case of the steady plane flow near the 
intersection of a rigid boundary and a flat free surface analysed by Michael' and Moffatt" and 
consists of two possible solution sets. In terms of the streamfunction t,b, 

(3) t,b = r*+'a,[cos(A+ 1)8-cos(A- l)Q, 2 , 2 , 2 ,  * . 9 

~=r~~"/3 , [ (A- l ) s in( l+ l )8- (A+l)s in( l -1)8] ,  for A=2,3 ,4 , .  . .  , (4) 

for A=' 3 I 

where ( r , 8 )  are the plane polar co-ordinates centred at the singular point and a, and PA are 
constants determined from the global solution. The first term of equation (3) indicates that the 
stresses (including pressure) and the velocity gradients close to the singular point vary as the 
inverse square root of the radial distance from the exit. 

2.1. Finite element formulation 

The primary unknowns in our formulation are the horizontal and vertical velocity components 
u and u and the pressure p. In the ISBFM we directly subtract the first few terms of the local 
solution from the original problem formulation. In other words, we transform the mathematical 
problem: if (u, u, p) are the 'total' solution components and (us, us, ps) are the singular contribu- 
tions, one can write 

u* = u-us ,  v* = u - us, P* = P - P S ,  (5 )  

where (u*, v * ,  p * )  are the new unknowns corresponding to the 'smooth' part of the solution. For 
the singular contributions we have 

NSBF NSBF NSBF 

us = 1 u j  wi,, us = 1 U j  wj,, ps = 1 u, w',. 
j =  1 j= 1 j =  1 

N,,, is the number of singular terms subtracted from the solution, aj  are the unknown singular 
coefficients and W;, W: and W; are the singular basis functions taken to be equal to the exact 
terms of the odd solution set in equation (3) (the even solution terms in equation (4) are regular). 

By substituting equations (5) into the governing equations, the mathematical problem is 
transformed to that shown in Figure 2. We should stress here that (us, us, ps) satisfy the original 
governing equations and the boundary conditions along the wall and the slip surface. We should 
also point out that instead of using essential boundary conditions for u at the inlet and at the 
outlet, we use natural boundary conditions.* 

Now the unknown velocities u* = (u*,  u*) are expanded in terms of biquadratic basis 
functions (aJ), and the unknown pressure p*  is expanded in terms of bilinear basis functions 

* The natural boundary conditions are weaker and do not require the use of Lagrange multipliers as in equation (15). 
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y = l  

y = o  

V.T* = 0 

v.u* = 0 
s5 

S A  Y t  
I =  -3 2 x = 3  

Figure 2. The modified stick-slip problem. The stars denote the new unknown variables and the superscript '9' denotes 
the singular contributions 

(W): 
N" NP 

u* = c uy CDj,  p*  = c pf w, 
j =  1 j =  1 

(7) 

where Nu and N ,  are the number of velocity and pressure nodes respectively. 

equation by CD': 
Applying Galerkin's principle, we weight the continuity equation by Y and the momentum 

jv V.u*Y"dV= 0, i = 1,2,. . . , N,, 

lvV.T.OidV=O, i =  1,2 , . . . ,  Nu, (9) 

where V is the physical domain. 
To account for the additional unknown singular coefficients ai, NsBF residual equations are still 

required. For this purpose we add the x-momentum equation weighted by W i  and the y- 
momentum equation weighted by W i  to the continuity equation weighted by Wa. If we let 

w; = (Wt ,  Wl) ,  

then we can write 

[(V-T*)*W;+V-u*Wk]dV=O, i =  1,2,. . . ,NSBF. J v  
After applying the divergence theorem, the residual equations (9) and (10) become 

{sn*T*QidS - T*.V@dV= 0, i = 1,2,. . . ,Nu, (1 1) 

I- n 

(n-T*)-WtdS- (T*:VW~-V.u*W~)dY=O, i =  1,2,. . . ,NSBF, Js J v  
where S is the boundary of V. Equation (12) can be simplified further if we apply the divergence 
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theorem once again: 

(n*T*).WidS - (n-TSi)-u*dS L b 
+ ~ “ I ” * . ( V . T ” ) + p * V . W ~ , d ~ = O ,  i =  4 2 , .  . . ,NSBF. (13) 

Is [(n-T*)*Wt - (n-TSi).u*]dS = 0, 

Tsi is the contribution of the ith singular functions to the stress tensor (e.g. T:! = - Wa 
+ 28 Wb/ax,  etc.). The volume integral of equation (13) is zero because the singular functions 
satisfy the original governing equations. Therefore the residual equation is reduced to a surface 
integral: 

i = 1,2,. . . , N S B F .  (14) 

As discussed above, the reduction of the volume integrals involving singular terms to boundary 
integrals eliminates the need to use high-order integration in the vicinity of the singular point. 
Notice that there is no boundary contribution on either the wall or the slip surface since the 
singular functions satisfy the conditions along these boundaries. 

Let us now examine the boundary terms in more detail. As shown in Figure 2, the boundary S 
consists of five parts: (a) the wall S ,  , (b) the slip surface S2,  (c) the outlet plane S,, (d) the midplane 
S4 and (e) the inlet plane S 5 .  The boundary terms along the wall ( S , )  are ignored because essential 
boundary conditions for u* and u* are to be used. Along the slip surface (S,) the x-direction 
components of the boundary terms are zero since T:, = T:, = 0. The y-direction components are 
ignored because of the essential boundary condition for u* .  

To impose the conditions u* + u s  = 0 along S ,  and u* + us =f(y) along S 5 ,  we use Lagrange 
 multiplier^'^ 1, and 1, respectively. These Lagrange multipliers are expanded in terms of 
quadratic basis functions M j :  

where N ,  and N ,  are the numbers of nodes along S4 and S5 respectively. Using Lagrange 
multipliers introduces N y  + N ,  new unknowns (Ai and 1:) into the system. These unknowns 
along with the singular coefficients are introduced by means of N ,  + N ,  + NsBF pseudonodes with 
one degree of freedom each. The nodes and pseudonodes for the first element (lower left corner of 
the domain) are shown in Figure 3. 

The boundary term of equation (1 1) becomes 

[sn.T*OidS = 1( -Is, T:,Oidy + 6, T:,Oidx - [s5L,,0idy) 

Similarly for the two terms of equation (14) we have 

(n-T*).WLdS = - Tzx Wbdy + Is, T:, Wbdx - 6,”. Wtdy Js 



INTEGRATED SINGULAR BASIS FUNCTION METHOD 1257 

velocity nodes (9) 
0 pressure nodes (4) 

+ Au nodes (3) 

x A, nodes (3) 
* singular coefficient nodes ( NSBF) 

+ 
X X X 

Figure 3. Nodes and pseudonodes in the first element. The number of degrees of freedom is 28+NsBF 

(n-TSi)-u*dS = js3 (u* TFx + u* TFy)dy - Is, (u* Tsi XY + U* Tsi YY)dX 

- Is, (u* TFx + V *  TFy)dy. 

The final forms of the residual equations are listed below. 

Continuity equations jv (ax au* + ,) au* Y'dxdy = 0, i = 1,2,  . . . , N,.  

Momentum equations 

L,,Oidy=O, i = 1 , 2  , . . . ,  Nu, 
- 6, -Iv ( TzYg + T;y- aai ) dxdy - 6, TzyOidy - b,i..Oidx +I, TZYOidy 

a Y  

- - l s 5 5 O i d y ,  i = 1,2, . . . ,Nu. 

Singular coeflcient equations 

(-usT:x + u * T S i ) d y  XY = - dy, i =  1 , 2 , .  . . , N,,,. 
+ 6, 

(19) 
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Lagrange multiplier equations -6. (u* + us))Midx = 0, 

- 6, 6, 
i =  1,2 , . . . ,  N,,  (23) 

(u* + uS)Midy = - j"Midy, i = 1,2, .  . . , N,. (24) 

Notice that use of the essential boundary conditions along S, and S5 was made in order to 
preserve the symmetry of the stiffness matrix. Equations (19)-(24) constitute a symmetric system 
of linear equations which is solved by a frontal The total number of unknowns is 
N = N, + 2Nu + N,,, + N ,  + N,,. 

2.2. Results and discussion 

In order to make comparisons with the ordinary and singular finite element results of 
Reference 12, we used the same uniform meshes: mesh I with 12 x 2 elements, mesh I1 with 24 x 4 
elements and mesh 111 with 48 x 8 elements. The meshes extend upstream and downstream to a 
distance equal to three channel half-widths to adequately approximate the inflow and outflow 
boundary conditions. 

Results have been obtained for various values of NSBF with the three meshes. Far from the 
singular point the ISBFM gives essentially the same results as the ordinary elements (and the 
singular elements as well). The estimates for the first five coefficients are listed in TableI. 
We observe that the first coefficient a1 appears to approach the analytical value of 069099 as 

Table I. Computed leading coefficients for the stick-slip problem with the ISBFM. The analytical 
value for a1 is 069099 

12x2 1 
2 
3 
4 
5 

10 
20 

24x4 1 
2 
3 
4 
5 

10 
20 

48 x 8 1 
2 
3 
4 
5 

10 
20 

0.72441 
0.68716 
0.68504 
0.70775 
0.69302 
0.69327 
0.69299 
0.70762 
068979 
0.68945 
0,68820 
0.691 51 
0.69143 
0.69 1 38 
0.69929 
0.69064 
0.69058 
0.69048 
069112 
0.69105 
069104 

0.29308 
0.30965 
0.12881 
0.24592 
024364 
024390 

028261 
0.28787 
0.308 16 
025430 
0.25561 
025604 

0.27457 
027658 
027984 
0.25884 
0.26096 
026140 

-0.00532 
- 0.0191 8 
- 0.00990 
-0.00950 
- O.OO903 

- 0,0045 1 

- 0.01 388 
- 0.0 1247 
- 0.01 17 1 

0.00173 

- 0.00400 
- 0.00140 
- 0.01 66 1 
- 0.0 1365 
-0.01263 

0.00265 
0.00057 O.ooOo4 
0.00047 -0ooOo2 

-0.oooO9 -0.00014 

- 0.00090 
OWO6 1 
000045 
O ~ o o o o l  - 

O.ooOo8 
0oooo2 

- 0oo009 

-000035 
0.00064 0*00012 
o.oO04 1 O.ooOo3 
OW000 -0*00008 
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the mesh is refined or as NsBF increases. A similar trend is also observed for the other leading 
coefficients. 

Table I1 compares the values of the first three coefficients with results from the literature. The 
calculated value of the second coefficient compares well with the value found by Ingham and 
Ke1mansonl6 who used a singular boundary element method. With the BSBFM a satisfactory 
estimate is obtained only for the first coefficient, because the blending function introduces extra 
higher-order terms not satisfying the governing equation.’ We should note that the singular 
coefficients are not directly calculated with the singular finite element method nor with ordinary 
finite element techniques. A least-squares fit of the velocity on the slip surface velocity was used 
for this p ~ r p o s e . ~  

As in Reference4, the normal stress along the wall and the slip surface was used for 
comparisons. It is the only non-singular stress component and thus offers a severe test for the 
numerical calculations. The normal stresses with mesh I and NsB, = 1 and 5 are plotted in 
Figure 4. Compared to the ordinary element solution, the oscillations have been essentially 
eliminated. As NsBF increases, the normal stress becomes smoother. 

Table 11. Estimates of the first three coefficients for the stick-slip problem 
obtained with mesh I11 and N,, = 5 (only for ISBFM and BSBFM) 

Method El a2 a3 

- - Analytical solution’g 069099 

BSBFM”, l7 0.69060 007712 0.0 1498 
Singular elements4 0.69173 0.27168 0.0501 3 

Boundary elements16 069108 0-26435 0-04962 

ISBFM (this work) 0.691 12 0.25884 - 0.0 1662 

Ordinary elements4 0.67170 019812 - 0.02297 

“I, 

t 

0.0 , k, 
-1.5 0.0 1.5 

HORIZONTAL DISTANCE, x/H 

Figure 4. Normal stresses with mesh I: - - -, NsBF = 1; -, NsBF = 5 
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The normal stresses with meshes I and 111 and N,,, = 1 are plotted in Figure 5. In contrast to 
the SFEM: the small-amplitude oscillations in the normal stress diminish as the mesh is refined. 
This is illustrated in Figure 6, where we compare the results of the two methods obtained using a 
refined mesh (mesh V from Reference 4). However, the singular elements give more accurate 
results with coarse meshes. 

HORIZONTAL DISTANCE, x/H 

Figure 5. Normal stresses NmF= 1: ---, mesh I; ---, mesh 111 

HORIZONTAL DISTANCE, x/H 

Figure 6. Comparison of the normal stresses obtained with the ISBFM (---, N,,,= 1) and the SFEM (-) using a 
refined mesh 
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3. THE DIE-SWELL PROBLEM 

The geometry, governing equations and boundary conditions for the die-swell problem are 
illustrated in Figure 7. The equations and boundary conditions are the same as those of the 
stick-slip problem except along the free surface, the position of which is unknown. We must 
simultaneously satisfy three conditions on the free surface. 

1. No fluid flows through the free surface (the kinematic condition): 

n - u  = 0, (25) 
where n is the unit normal vector pointing outwards from the free surface. 

2. The shear stress is zero: 

nt:T = 0, (26) 
where t is the unit tangential vector. 

3. The normal stress balances the capillary pressure: 

nn:T = 2H/Ca, (27) 
where 2H is the mean curvature of the free surface and Ca-pula,  a being the surface 
tension. 

The kinematic equation provides the additional equation needed to calculate the unknown free 
surface profile h( x); the other two equations serve as boundary conditions for the momentum 
equation. Notice that the die-swell problem is non-linear owing to the presence of the unknown 
free surface. 

3.1. Finite element formulation 

To implement the ISBFM, we use the singular functions developed for the stick-slip problem. 
In the infinite-surface-tension limit of the die-swell problem we recover the stick-slip problem. In 
the zero-surface-tension limit the use of the same functions is jutified by Michael's analysisg which 

n . u  = O  

t n : T  = 0 

s2 

n n : T  = Co 

u = o ,  v = o  

s1 

T,, = 0 

T,, = 0 

I= -4 2 t = 4  

Tyz = 0, v = 0 

Figure 7. The die-swell problem 
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shows that the angle between the wall and a free surface must be 180". Obviously, the singular 
functions do not satisfy the boundary conditions everywhere along the free surface (except in the 
infinite-surface-tension case) and therefore additional boundary terms along S2 appear in the 
finite element formulation. 

Full Newton iteration is employed here to compute the free surface profile simultaneously with 
the velocity and pressure fields, as in the ordinary finite element method and SFEM.1Z*'7 
Quadratic basis functions M i  are used to expand the free surface location and to weight the 
kinematic equation. The mesh is updated at each iteration step according to the new position of 
the free surface. More details about the method are given in Reference 17. 

The final forms of the continuity and Lagrange multiplier equations are the same as those of 
the stick-slip problem. The momentum, singular coefficient and kinematic residual equations are 
now given as follows. 

Momentum equations 

T:x cDidy + Is4 TZY Wdx - Is, 1, Wdy = 0, i = 1,2, . . . , Nu, 
- 6, (28) 

h ,  acDi -I( T z y g  + dx- Is, ( T;y - h, Tsy)(Didx 

T:,,Bidy-[ i . d ' d x + ~ s ~ T : y ~ i d y = ~ s , d ; ~ l d y ,  df ' 

- 6, s4 

i =  1,2, ..., Nu. (29) 

Singular coeficient equations 

hx awg 
dx 

n P P 

+ J (u*TFy-usTE)dx+ J (-usTFx+u*TFy)dy 
s4 ss 

Wt) dy, i = 1, 2, . . . , NSBF. 
= - 6, (f TFx-& d f  

Kinematic equations 

[ ( - h x ~ * + ~ * ) + ( - h x ~ S + ~ S ) ] M i d ~ = O ,  i = l ,  2 , .  . . , Nh. (31) I, 
Nh is the number of the unknown free surface nodes. Thus the total number of unknowns is now 
N = N, + 2N,  + NSBF + N ,  + N y  + Nh.  Details about the treatment of the integrals along the free 
surface are given elsewhere. 
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3.2. Results and discussion 

In order to make comparisons, we use three meshes of different refinement (I, I1 and 111) which 
we used previously in studying ordinary finite elements and the SFEM.’ All meshes extend four 
channel half-widths upstream and downstream. The converged meshes are shown in Figure 8 and 
their characteristics are listed in Table 111. 

The obvious choice for comparisons is the free surface profile. In Figure 9 we compare the free 
surface profiles for zero surface tension predicted with the ordinary finite elements, using all 
meshes, and the ISBFM solution obtained with the coarsest mesh I and one singular function 
(PISBF = 1). The ISBFM gives essentially identical results for the free surface position and the die- 
swell ratio for all meshes (see Table IV), so we have not plotted the free surface profile for mesh I1 
or 111 here. As shown in Figure 9, the free surface profiles obtained with the ordinary finite 
elements converge slowly to the ISBFM result. Clearly, the ISBFM accelerates the convergence of 
the free surface profile with mesh refinement. 

With NssF = 1 the singular coefficient for the three meshes shows more variation than the free 
surface position: with mesh I a1 =0-682, with mesh I1 a1 =0.701 and with mesh I11 a1 =0.715. The 
non-linear iteration seems quite sensitive to the value of the singular coefficient, and in fact with 

MESH I 

MESH II 

MESH 111 

Figure 8. Converged ISBFM meshes for the die-swell problem at zero surface tension 

Table 111. Data for the meshes used for the die-swell problem 

Number of Number of Degrees of size of 
Mesh elements nodes freedom comer elements 

I 120 600 1314 020 
I1 196 928 2044 0.10 
111 288 1320 2918 0.10 
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1.25 

_ _ _ ~ _ _ _ _ _ _  
I 2 1.20 

9 

g 1.10 

L L  

1.15 
a 
w 
0 

3 
v, 
W 
W 
[r 1.05 
LL 

1 .oo 
0.0 1 .o 2.0 3.0 4.0 

HORIZONTAL DISTANCE, x/H 

Figure 9. Computed free surface profiles at zero surface tension: - - -, ordinary mesh I; - - - - - -, ordinary mesh II; ... , 
ordinary mesh HI; ~ , singular mesh I 

Table IV. Predicted die-swell ratios with ordinary 
elements, the SFEM and the ISBFM 

Ordinary 
Mesh elements SFEM ISBFM 

I 1.2193 1.1865 1-1871 
I1 1.2036 1.1863 1.1866 
I11 1.1952 1.1860 1.1864 

more than one singular function the iteration diverges for some values of Ca (particularly for 
Ca> 1). We feel that this is due to the strength of the singular contributions on the free surface. 

As reported in Reference 5, the acceleration of convergence for the free surface profile with 
mesh refinement is also achieved with the SFEM. The SFEM is relatively simple to implement 
because no extra boundary terms appear in the formulation and it does not require knowledge 
of the angular form of the asymptotic functions. However, the SFEM performs poorly on 
extensively refined meshes since the singular elements also become small. 

It should be noted that the free surface slope at the origin is not zero and hence violates the 
separation condition of Michael' for flows with zero surface tension. Schultz and Gervasio" 
conjecture that the free surface has infinite curvature at the singular point. We have not yet 
implemented singular shape functions in addition to singular basis functions; however, the slope 
at the origin appears to decrease as the mesh is refined. 
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4. CONCLUSIONS 

The integrated singular basis function method (ISBFM) was used to solve the stick-slip and the 
die-swell problems. Compared to ordinary finite elements, the method eliminates the oscillations 
that characterize the normal stress along the wall and the position of the free surface. In the case 
of the die-swell problem the ISBFM also accelerates the convergence of the free surface profile 
with mesh refinement. 

Both the ISBFM and the singular finite element method (SFEM) have advantages. They give 
similar results when rather coarse meshes are used. The SFEM is relatively simple to implement 
and does not require knowledge of the angular form of the local solution. However, unlike the 
SFEM, the ISBFM can be used with extensively refined meshes since the singular functions are 
independent of the refinement of the underlying mesh. 
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