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SUMMARY 

We solve the compressible Newtonian extrudate swell problem in order to investigate the effect of compressibility 
on the shape of the extrudate. We employ a first-order equation of state relating the density to the pressure and use 
finite elements for the numerical solution of the problem. Our results show that the shape of the extrudate and the 
final extrudate swell ratio are not significantly affected even at high compressibility values. 
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1. INTRODUCTION 

The extrudate swell problem has been one of the most extensively studied problems in the area of 
polymer-processing simulations. Since the first solution of the two-dimensional Newtonian problem by 
Nickell et ul.,’ who used a Picard iteration, finite element scheme, considerable progress has been 
made in extrusion modelling. Ruschak’ proposed the full Newton iteration method in which the 
position of the free surface is computed simultaneously with the velocity and pressure fields. 
O m ~ d e i ~ . ~  presented complete series of results at various Reynolds and capillary numbers for both the 
planar and axisymmetic Newtonian extrudate swell problems. Crochet and Keunings’ solved the 
viscoelastic extrudate swell problem using differential constitutive models and Papanastasiou et ~ 1 . ~  
developed the streamlined finite element method for integral constitutive models. Georgiou et ~l.’~* 
developed singular finite elements for the solution of the Newtonian problem. More recent progress 
includes the development of new techniques for integral three-dimensional extrusion 
simulations’ ‘ - I 3  and die design.13-” 

In this paper we consider the axisymmetic Newtonian extrudate swell problem and examine the 
effect of compressibility on the shape of the free surface and the final extrudate swell ratio. A simple 
first-order equation of state is used to express the density of the fluid as a function of pressure. The 
density is eliminated and a standard finite element method is employed for the numerical solution of 
this free surface problem. The numerical results show that the free surface profile and the final 
extrudate swell ratio are not significantly affected even when the fluid is highly compressible. It should 
be added, however, that compressibility combined with slip at the wall can alter dramatically the 
dynamics of the flow. This has been demonstrated in Reference 16 for time-dependent compressible 
Poiseuille flow. 

In Section 2 we present the governing equations and boundary conditions. In Section 3 we give a 
brief description of the finite element formulation. The numerical results are presented and discussed 
in Section 4. 
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& 

h pv. = 2(1 - r*)  

2 .  GOVERNING EQUATIONS 

We consider the steady compressible axisymmetric extrudate swell problem. The geometry is shown in 
Figure 1. If p, p ,  v and 0 are the density, pressure, velocity vector and stress tensor respectively, the 
continuity and momentum equations in the absence of body forces read 

v . p v  = 0, (1) 

a*z = 0 

pv.vv - V.0 = 0. (2) 
For the bulk viscosity we make the usual yet arbitrary assumption that it is zero. l 7  The stress tensor 

for compressible Newtonian flow is then given by 

d = -p(p)I + q[(Vv) + (VVy] - $qIV.v, (3) 

where I is the unit tensor, q is the viscosity and the superscript T denotes the transpose. The viscosity is 
assumed to be independent of the pressure. 

The above equations are completed by a thermodynamic equation of state. As in Reference 16, we 
use the first-order expansion 

P = POP + Bb -Po)] ,  (4) 

where 

is the isothermal compressibility, po and Vo are the density and specific volume at the reference 
pressure po  respectively and T is the temperature. 

It is convenient to work with dimensionless equations. For that purpose we scale the lengths by the 
radius R and the velocity components by &llpd2, where &l is the mass flow rate. The pressure p - p o  
and stress components are scaled by q&llp,,R3 and the density by po. Two dimensionless numbers are 
obtained, namely the Reynolds number Re and a compressibility number B: 

We thus obtain the set of dimensionless equations 

Figure 1. Boundary conditions for extrudate swell problem 
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Re p*v*.V*v* - V*.cr* = 0, (7) 

Q* = -p*1 + [(V*v*) + (V*v*)T] - $IV*.V*, (8) 

p* = 1 +Bp*.  (9) 
The superscript asterisks denote non-dimensional variables and will be dropped hereafter without any 
risk of confusion. 

The boundary conditions are shown in Figure 1. Along the axis of symmetry we have the usual 
symmetry conditions and along the wall both velocity components vanish. At the exit plane the flow is 
considered hlly translational. Surface tension is neglected and therefore the normal and tangential 
stress components vanish on the free surface. Another condition at the free surface is the kinematic one 

n . v = O ,  (10) 

where n is the outward unit vector normal to the free surface. The kinematic condition provides the 
additional equation used for the calculation of the free surface location. Finally, at the inlet plane we 
assume that the density is constant, the axial velocity is parabolic and the mass flow rate is n. Therefore 
we have 

pv, = 2( 1 - 3).  ( 1 1 )  

The above assumptions are consistent with the analytical solution for compressible Poiseuille flow. l 6  

3. FINITE ELEMENT FORMULATION 

The full Newton iteration method is employed for this free surface problem. In other words, 
the unknown position of the free surface h is calculated simultaneously with the velocity and 
pressure fields.* The density is eliminated by means of the equation of state (9). We use the 
standard biquadratic velocity (P2-Co) and bilinear pressure (P'-Co) elements with a quadratic 
expansion for h. 

Let YJ, W. and 2 denote bilinear, biquadratic and quadratic shape functions respectively. The 
unknowns p, v and h are expanded as 

N" N" N' 

J 

Here p', 4 and N are the values of the unknowns at the jth node and Np, N, and Nh are the numbers of 
pressure, velocity and free-surface nodes respectively. For steady flow the discretized Galerkin 
equations in non-dimensional form read 

V.(l + Bp)vY' dQ = 0, i = 1,2,. . . , N p ,  (13) 

[Re( 1 + Bp)v.Vv@' + a.V@'] dQ - n-o@' ds = 0, i = 1,2,. . . , N,, (14) 

n.v{X'} & = O ,  i =  ll2,...,Nh1 J, 
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where R and i32 denote the domain and its boundary respectively. 
The discretized z-momentum equations along the inlet are replaced by 

1 [pvz - 2( 1 - 2)]Qirdr = 0. 
inlet 

It should be added that in the earlier stages of this work the density was not eliminated but was 
approximated using the same low-order basis functions as for the pressure. Such a mixed finite element 
should satisfy the inf-sup condition for stability purposes. According to Fortin and Soulaimani," this 
element gives good results at low Mach and Reynolds numbers. For the values of Re and B considered 
here, the results obtained with the above element are essentially the same as those of the present 
formulation. 

4. RESULTS 

Results have been obtained for various values of Re and B. The convergence of the numerical scheme 
has been checked by employing meshes of various lengths and refinements. All the results presented in 
the sequence have been produced with a mesh extending 5 radii upstream and 5 radii downstream and 
consisting of 72 x 10 elements. In Figure 2 we show the free surface profiles computed at Re = 0 and 
various values of the compressibility number B. For low values of B, swelling is reduced as B is 
increased, and this agrees with the results of Beverly and Tanner;" above a critical value of B (about 
0.06), however, swelling is enhanced with compressibility. The results for non-zero Re are similar. 

The final extrudate swell ratio hf is plotted as a hnction of B in figure 3 ,  where we provide the 
results for Re = 0 and 1. The changes caused by compressibility are not larger than 1 *5% despite the 
fact that the values of B considered here are rather high and correspond to large density changes 
uncommon to fluids typically used in extrusion. (A typical value for the compressibility number in 
polymer extrusion is B = 0.0003.16) As an example, for B = 0- 1 and Re = 0 the density varies from 0.24 
(near the lip) to 3-05 (at the inlet). The density contours for this flow are shown in Figure 4. 

One would intuitively expect that swelling should be enhanced with compressibility, since the 
density of the fluid becomes lower outside the tube. As indicated in Figure 4, however, the fluid is 
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Figure 2. Free surface profiles for creeping compressible flow 
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Figure 3. Final extrudate swell ratio for Re = 0 and I 

Figure 4. Density contours for B = 0.1 and Re = 0 

slightly compressed in the extrudate region. Because of the presence of the singularity at the exit of the 
tube, there exists a negative pressure regime in the extrudate region, around the singularity and just 
after the exit. Therefore the fluid is compressed as it moves downstream where the pressure is zero. 
When the compressibility number is low, this compression is more significant than the decompression 
of the fluid at the exit, which explains the minimum we observe in Figure 3. 

Finally, in Figure 5 we plot the calculated pressures and volumetric flow rates at the inlet. The inlet 
plane is located 5 radii upstream of the exit. The pressure drop decreases considerably with the 
compressibility number and so does the volumetric flow rate, in close agreement with the analytical 
solution for compressible Poiseuille flow. 

5. CONCLUSIONS 

We have modelled the compressible extrudate swell problem using finite elements and a first-order 
equation of state. The numerical results show that the shape of the extrudate and the final extrudate 
swell ratio are not significantly affected even when the compressibility is high. 
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Figure 5. (a) Pressure and (b) volumetric flow rate at the inflow plane located 5 radii upstream of the exit. The broken line is the 
analytical solution for compressible Poiseuille flow 
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