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SUMMARY

Both the axisymmetric and the planar Newtonian extrudate-swell problems are solved using the standard
and the singular finite element methods. In the latter method, special elements that incorporate the radial
form of the stress singularity are used around the exit of the die. The convergence of each of the two
methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers.
The numerical results show that the singular finite elements perform well if coarse or moderately refined
meshes are used, and appear to be superior to the standard finite elements only when the Reynolds
number is low and the surface tension is not large. The standard finite elements perform better as the
surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity
on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant
when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In this paper, the singular finite element method (SFEM), developed by Georgiou et al. [1,2]
for solving Newtonian flow problems with boundary stress singularities is revisited. In the
SFEM, special elements incorporating the radial form of the local solution by means of
singular basis functions are employed in a small region around the singularity, while standard
elements are used in the rest of the domain. The basic motive behind using singular methods
is to improve the accuracy and the rate of convergence of the solution with mesh refinement,
which are rather unsatisfactory with standard numerical methods, especially in the neighbor-
hood of the singularity. The poor performance of the standard FEM is attributed to the fact
that the calculated pressure and stresses cannot be infinite at the singular point, as required by
the local asymptotic solution, and are thus tainted by spurious oscillations. This difficulty is
overcome with the SFEM.

Georgiou et al. [2] applied the SFEM to the planar Newtonian extrudate-swell problem,
which describes the extrusion of a viscous fluid through a die into an inviscid medium. This is
a well-known free-surface problem; at low Reynolds numbers, the fluid swells as it comes out
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of the die. Another important characteristic of this flow is the presence of a stress singularity
at the exit of the die, resulting from the sudden change in the boundary condition from the
wall of the die to the free-surface of the extrudate. The singular finite element calculations for
the planar Newtonian extrudate-swell problem have revealed that the spurious stress oscilla-
tions that characterize the stresses in the standard finite element solution are eliminated, and
that the convergence of the free surface profile with mesh refinement is considerably acceler-
ated [2]. The SFEM is not free of drawbacks [1]. Firstly, extensive mesh refinement is not
possible with the SFEM. As the mesh is refined, the singular elements become smaller in size,
and consequently, the size of the region over which the singularity is given special attention is
reduced. Second, the method can be implemented only if the radial form of the local solution
is known, at least approximately. This implies that the method is not applicable to many
important problems, such as most visco-elastic flow problems in which the inaccuracies,
stemming from the failure to satisfactorily approximate the stress behavior near the singularity,
are in general, more severe.

In this paper, the round and planar Newtonian extrudate-swell problems are solved using
both the standard and the SFE methods. The convergence of the numerical solutions with
mesh refinement is systematically studied. The objective is to compare the performance of the
two methods and to obtain accurate estimates of the position of the free-surface and the
extrudate-swell ratio. These results can be quite useful in testing other numerical methods
proposed in the literature. In Section 2, the governing equations and the boundary conditions
for the axisymmetric extrudate-swell problem are briefly presented, and the assumptions made
for the construction of the singular basis functions are discussed. In Section 3, the finite
element formulation is outlined. The numerical results are presented and discussed in Section
4. Comparisons are made with the standard finite element results for various values of the
Reynolds number and the capillary number (the ratio of viscous to surface tension forces). The
numerical calculations reveal that the singular finite elements accelerate the convergence of the
free-surface when the Reynolds number is low and the surface tension is not high.

2. GOVERNING EQUATIONS

The flow geometry and the dimensionless governing equations and boundary conditions for
the steady state, axisymmetric, incompressible extrudate-swell problem are depicted in Figure
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Figure 1. Geometry and boundary conditions for the extrudate-swell problem.
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Table I. Data for ordinary element meshes (L, = 20)

Mesh Number of elements Number of nodes Degrees of freedom  Size of corner elements

OM1 140 639 1506 0.2
OM2 276 1209 2807 0.1
OM3 472 2023 4660 0.05
OM4 781 3289 7528 0.025
OMS5 1335 5549 12 642 0.01
OM6 1818 7511 17076 0.005
OM7 3325 13617 30 866 0.0025

1. The scaling parameter for lengths is either the radius R or the channel half-width, for the
axisymmetric and planar problems respectively. The velocity vector u is scaled by the mean
velocity U, and finally, the pressure p and the stress tensor 7 are measured in units of #U/R,
where # is the viscosity. This non-dimensionalization yields two dimensionless numbers, the
Reynolds number,

pUR

Re=——,, (1)
n
where p is the density, and the capillary number,
U
Ca="", )
o

where o is the surface tension. The governing equations and the boundary conditions are
described in detail elsewhere [2].

A prerequisite for the construction of the singular finite elements is the knowledge of the
radial form of the singularity. Assuming that the slope of the free-surface at the singular point
is zero, one can show that, in the plane flow, the velocity components vary as

u, (or u) A"+ Agr + AP + Ag? 4, ©)
while the pressure varies as
PB4+ B+ By Byt @)

where r is the radial distance from the singular point, and 4; and B, are constants. The latter
assumption is based on Michael’s analysis for vanishingly small surface tension on a planar
free-surface [3], and eliminates the need of finding the angle of separation and constructing
appropriate singular basis functions [2]. In fact, Georgiou et al. [2] showed that the numerical
results are not sensitive to small variations of the singularity powers used for the planar
extrudate-swell problem. Their results are consistent with the numerical results of Salamon et
al. [4] for finite capillary numbers, which reveal that the values of 4 are in the range
1.50 « A« 1.55 and correspond to singular, albeit integrable, stresses. Georgiou et al. [2]
obtained accurate oscillation-free results with rather coarse meshes, not only for the limiting
case of zero Reynolds number and zero surface tension but also for small and moderate values
of the Reynolds number, and for a wide range of capillary numbers. Using the SFEM for
non-zero Reynolds number flows is justified by the fact that the local solution remains
unchanged around the singular point where viscous effects dominate. Moreover, as surface
tension increases, the flow approaches the stick—slip flow limit, the local solution of which was
used for designing the singular elements.
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Table II. Data for singular element meshes (L, = 20)

Mesh  Number of elements Number of nodes Degrees of freedom Radius of corner elements

SM1 148 697 1654 0.24
SM2 284 1267 2955 0.12
SM3 480 2061 4808 0.06
SM4 789 3347 7676 0.03
SM5 1343 5607 12790 0.012
SM6 1826 7569 17 224 0.006
SM7 3333 13675 31034 0.003

Although the analysis of Michael [3] does not apply to the axisymmetric extrudate-swell
problem, the same elements will be used for solving the axisymmetric extrudate-swell problem.
In fact, the analytical solution for the axisymmetric stick—slip problem obtained by Sturges [5]
reveals that the velocity components «. and u, follow Equations (3) and (4) respectively. Thus,
it is reasonable to assume that the radial form of the singularity in the axisymmetric
extrudate-swell problem is the same. It will be verified, in Section 4, that the accuracy and the
rate of convergence achieved with the singular elements are quite satisfactory.

3. FINITE ELEMENT FORMULATION

The flow domain is discretized by means of eight singular elements around the singular point
and standard rectangular elements elsewhere. Let ®° and W' denote the basis functions used for
the finite element approximations of the velocity vector and the pressure respectively. Over the
ordinary elements, ®' are biquadratic (P? — C°) and W' are bilinear (P! — C°). (These are the
most common approximations used for Newtonian flow.) The ordinary elements thus contain
nine velocity and four pressure nodes. The singular elements are collapsed quadrilaterals with
13 velocity nodes and eight pressure nodes. In contrast to the polynomial basis functions used
with ordinary elements, the basis functions for # and p over the singular elements are
constructed so that they embody the behavior of the leading four terms of Equations (3) and
(4) respectively, in the radial direction. Towards this end, it is very convenient to have

Table III. Calculated extrudate-swell ratios for the round and the planar jets at Re =0 and zero
surface tension (L, =5)

Mesh Round jet Planar jet
Ordinary elements  Singular elements Ordinary elements  Singular elements

1 1.1594 1.1260 1.2209 1.1859

2 1.1435 1.1263 1.2049 1.1862

3 1.1356 1.1265 1.1965 1.1863

4 1.1314 1.1265 1.1919 1.1863

5 1.1287 1.1265 1.1888 1.1863

6 1.1276 1.1264% 1.1876 1.1860*

7 1.1271 1.1260* 1.1869 Diverge

4 The corresponding solutions are tainted by wiggles near the exit.
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Figure 2. Free-surface profiles with ordinary element meshes OM1-OMS5 (dashed lines) and SM1 (solid line);
axisymmetric extrudate-swell problem, Re =0 and Ca = co.

triangular, and not rectangular, singular elements with one vertex at the singular point. From
Equation (4), it is also clear that the pressure is infinite at the singular point. This fact is taken
care of by the singular basis functions; thus, no pressure node is placed at the singular point.
In other words, the need to calculate an infinite quantity is eliminated. This is one of the most
important features of the singular finite elements, resulting in the elimination of the Gibbs-type
oscillations of the pressure. More details about the construction and the complete expressions
of the basis functions for # and p may be found in [1]. Finally, to approximate the unknown
position of the free-surface 4, quadratic basis functions are used.

The standard Galerkin method is used to weight the momentum, the continuity and the
kinematic equations. The resulting non-linear system of equations is solved using the Newton
method and a standard frontal subroutine. The mesh is updated at each iteration by the newly
found free-surface location values. The nodes of the singular elements are at a constant
distance from the singular point, rotating around the singular point according to the shape and
the position of the free surface [2]. The standard 3 x 3 and a modified 5 x 3 Gaussian
quadratures are used for the numerical integration over the ordinary and the singular elements
respectively [1].

4. RESULTS AND DISCUSSION

For the convergence studies, seven ordinary element meshes, OM1-OM?7, were constructed.
From them, the singular element meshes, SM1-SM7, were generated by replacing eight
elements around the singular point by eight singular and eight ordinary elements. All meshes
extended up to five radii upstream (L, =5). Three different values were considered for the
length L, of the domain downstream of the exit, i.e. L, =135, 20 and 40. In Tables I and II,
useful data about the ordinary and singular meshes with L, =20 are tabulated.

Considered first was the creeping flow (Re = 0) with zero surface tension (Ca = oo). For this
particular case, the value L, =15 for the length of the extrudate is adequate to capture the
swelling of the extrudate. The numerical results obtained with the three values of L, are the
same up to five significant digits. The values of the extrudate-swell ratios (4,) calculated with
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both the ordinary and singular elements are tabulated in Table I11. As pointed out by Tanner
[6], swelling is generally reduced as the number of degrees of freedom is increased (i.e. as the
mesh is refined), when using ordinary elements. From Table III, it is observed that this is not
the case when the singular finite elements are used. It is also observed that the singular element
solution converges much faster than its ordinary element counterpart. This is illustrated in
Figure 2, where the free-surface profiles calculated with meshes OM1-OMS are compared
with that obtained with the coarsest singular element mesh SM1. Comparing the values of /4,
given in Table III, note that the solution obtained with SM1 is more accurate than that
obtained with the finest ordinary element mesh OM7.

As already mentioned, the performance of the SFEM deteriorates when the singular
elements are small. Indeed, with the last two singular meshes (SM6 and SM7), oscillations
appear on the free-surface, as illustrated in Figure 3. The inaccuracies propagate downstream,
and they thus affect the calculated value of /. Note also, that with more refined meshes, the
SFEM diverges. It is concluded that the most accurate results are obtained with mesh SMS5.
Hence, the converged values of /i, for zero Re and zero surface tension are 1.1265 and 1.1863
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Figure 3. Free-surface profiles near the exit; axisymmetric extrudate-swell problem, Re =0 and Ca = co.
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Figure 4. Calculated extrudate-swell ratios for the axisymmetric problem at zero surface tension (Ca = o0); dashed
line: standard finite elements, mesh OM4; solid line: singular finite elements, mesh SM4.

for the axisymmetric and planar problems respectively. Tanner [6] provided a selection of 4,
values from the literature and estimated the extrapolated values /.= 1.127 + 0.003 (axisymmet-
ric) and s,=1.190 + 0.002 (plane) for an infinite number of degrees of freedom.

An interesting observation is that for Re =0 (and any value of Ca), the free-surface is not
a monotonic function of z (or x, in the planar flow). For Ca = co, the maximum is attained
at a value of z in the interval (2.48, 2.60). No attempt has been made for calculating the exact
location of the maximum since this is not particularly sharp (A, = /,+ 0.0001); such a
calculation would have required extensive refinement in the direction of the flow. For lower
values of Ca, the swelling is reduced and the maximum becomes less sharp. It is well-known
that, as the Reynolds number is increased, the swelling of the extrudate is reduced and the jet
actually contracts, above a critical value of Re [7]. In such a case, the free-surface is still
non-monotonic and exhibits a minimum [7].

The performance of both the standard and the singular finite elements for Reynolds
numbers ranging from 0 to 20 and for capillary numbers ranging from 0.01 to infinity has also
been studied. A zero-order continuation was used for both Re and Ca, starting form Re =0
and Ca = 0. In the runs for non-zero Reynolds number, the longer meshes (L, =20 and 40)
were used. The results for both lengths were the same up to five significant digits. In Figure
4, results are shown for the axisymmetric extrudate-swell problem for zero surface tension
(Ca = o0). The extrudate-swell ratios calculated using meshes of moderate refinement, i.c.
meshes OM4 and SM4, are plotted versus the Reynolds number. It is observed that the
differences between the standard and the singular finite elements diminish as the Reynolds
number is increased. This implies that the effect of the singularity on the free-surface profile
becomes less severe at higher Reynolds number. Similar results have been obtained for the
planar extrudate-swell problem.

In Figure 5, the convergence of the two methods for Re =0 and various capillary numbers
are presented for the case of the planar extrudate-swell problem. (The results for the
axisymmetric problem are similar.) In Figure 5(a), the extrudate-swell ratios calculated with all
standard meshes are plotted versus the capillary number. It is observed that, for Ca < 1, all
meshes give practically the same results (up to four or five decimal digits). For higher values
of the capillary number, the convergence of the standard FEM is rather slow. In Figure 5(b),
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the extrudate-swell ratios calculated with all singular meshes are plotted. The singular finite
elements give impressively accurate results, even with coarse meshes, for values of Ca > 1. For
lower Ca values, the accuracy is not satisfactory. The method appears to converge slowly with
mesh refinement. However, as the size of the singular elements is reduced, wiggles appear on
the free-surface near the exit, which become more severe with meshes SM6 and SM7, and
result in the divergence of the method. In Table IV, the best estimates from this study of the
planar extrudate-swell ratios are given for various capillary numbers. The tabulated values for
Ca > 1 have been obtained with the singular elements (mesh SM5), and the others with the
ordinary elements (mesh OM7). The value 1.1291 for Ca =1 agrees well with that calculated
by Salamon et al. [4].
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Figure 5. Calculated extrudate-swell ratios for the planar problem at zero Re: (a) standard finite elements, meshes
OM2-0OMT7; (b) singular finite elements, meshes SM2-SM6.
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Table IV. Calculated extrudate-swell ratios for the planar extrudate-swell
problem at Re =0

Ca hy

0 1.1863

10 1.1794
5 1.1724
1 1.1291
0.5 1.0960
0.1 1.03047
0.05 1.01016
0.01 1.00350

5. CONCLUSIONS

The standard FEM and the SFEM have been applied to the planar and axisymmetric
extrudate-swell problems. The convergence of the two methods with mesh refinement has been
studied for various values of the Reynolds and the capillary numbers. It has been found that
the singular finite elements accelerate the convergence of the free-surface when the Reynolds
number is low and the surface tension is small. For high values of the surface tension and
Reynolds number, the effect of the stress singularity on the numerical solution is less
significant.
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