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Abstract

We solve the one-dimensional cessation Couette and Poiseuille flows of a Bingham plastic using the regularized constitutive equation
proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. The numerical calculations confirm
previous theoretical findings that the stopping times are finite when the yield stress is nonzero. The decay of the volumetric flow rate, which
is exponential in the Newtonian case, is accelerated and eventually becomes linear as the yield stress is increased. In all flows studied, the
calculated stopping times are just below the theoretical upper bounds, which indicates that the latter are tight.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ditions play a crucial rol§4]. In a similar fashion, the upper
bounds derived by Huilgdb] for the cessation of axisym-

In viscometric flows, one can bring a fluid to a halt by metric Poiseuille flows with more general viscoplastic fluids
setting the moving boundary to rest in the case of Couette must be caused by the lateral movement of the yield surface.
flows, or by reducing the applied pressure gradient to zero  The objective of the present work is to compute numer-
in Poiseuille flows. In a Newtonian fluid, the correspond- ically the stopping times and make comparisons with the
ing steady velocity fields decay to zero in an infinite amount theoretical upper bounds provided in the literature for the
of time [1]. In a Bingham plastic, the velocity fields go to cessation of three flows of a Bingham fluid: (a) the plane
zero in a finite time, which emphasizes the role of the yield Couette flow; (b) the plane Poiseuille flow; (c) the axisym-
stresg2,3]. Glowinski[2] and Huilgol et al[3] have provided metric Poiseuille flow. Instead of the ideal Bingham-plastic
explicit theoretical finite upper bounds on the time foraBing- constitutive equation, we employ the regularized equation
ham material to come to restin various flows, such as the planeproposed by Papanastasiffi], to avoid the determination
and circular Couette flows and the plane and axisymmetric of the yielded and unyielded regions in the flow domain. It
Poiseuille flows. To be specific, each upper bound depends orshould be noted that preliminary results for the case of the
the density, the viscosity, the yield stress and the least eigenplane Poiseuille flow can also be found in R&i.
value of the Laplacian operator on the flow dom@8]. As The paper is organized as follows. In Sect®rwe dis-
for the underlying cause for the finite extinction time, it can cuss the regularized Papanastasiou equation for a Bingham
be shown that the yield surface moves laterally with a finite plastic. In Sectior8, we present the dimensionless forms of
speed bringing the fluid to a halt, and that kinematical con- the governing equations for the three flows of interest along

with the corresponding theoretical upper bounds. In Section
"+ Corresponding author. Tel.: +357 22892612; fax: +357 22892601, 4, We present and discuss representative numerical results
E-mail address: georgios@ucy.ac.cy (G.C. Georgiou). for all flows. The numerical stopping times are just below
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the theoretical upper bounds, i.e. the latter are tight. Some3.1. Cessation of plane Couette flow

discrepancies are observed only for low Bingham numbers

when the growth parameter in the Papanastasiou modelisnot The geometry of the plane Couette flow is showrig.
sufficiently high. Finally, Sectiob contains the conclusions  1a. The steady-state solution is given by

of this work.

B =(1-3)v. (5)

2. Constitutive equation whereV is the speed of the lower plate (the upper one is
kept fixed) andH is the distance between the two plates.
Letu andz denote the velocity vector and the stress tensor, We assume that at= 0, the velocityu,(y, ) is given by the

respectively, angr denote the rate-of-strain tensor, above profile and that at= 0™ the lower plate stops moving.
. T To nondimensionalize themomentum equation, we scale
y=Vu+(Vu), (1) the lengths byH, the velocity byV, the stress components

) . ] by uV/H, and the time byH?2/u, wherep is the constant
whereVu is the velocity-gradient tensor, and the superscript density of the fluid. With these scalings, thenomentum
T denotesits transpose. The magnitudegsarfidr are respec- equation becomes

tively defined as follows:
oy 0Tyx

T , 6)
5 NN T (
y = 2II = 2)/.)/ and 7= 2II,_ Zr.r,

(2)

The dimensionless form of the Papanastasiou model is

reduced to
where Il stands for the second invariant of a tensor. Bn[l — exp(=M7y)] Aty
Intensorial form, the Bingham modelis written as follows: Tyx = { v + } E ()
{ y=0, T < 10, @) wherey = |du,/dy|,
t:(@+u)jf, 7> 10, H
Y Bn = —IOV (8)
wherery is the yield stress, and is a constant viscosity. H
In any flow of a Bingham plastic, determination of the is the Bingham number, and
yielded ¢ > tp) and unyieldedd < 7p) regions in the flow
field is necessary, which leads to considerable computational, — mv (9)
difficulties in the use of the model. These are overcome H
by using the regularized constitutive equation proposed by is the dimensionless growth parameter.
Papanastasio]: The dimensionless boundary and initial conditions are as
. follows:
to[1 — exp(=m y)] :
- { _ s (@)
14 uy(0,6)=0, >0, uy(1,1)=0, =0,
wherem is a stress growth exponent. For sufficiently large u,(y,0)=1-y, 0<y <1 (10)

values of the regularization parameterthe Papanastasiou

model provides a satisfactory approximation of the Bingham In the case of a Newtonian fluidBg = 0), the analytical
model, while at the same time the need of determining the solution of the time-dependent flow, governed by HG3,
yielded and the unyielded regions is eliminated. The model (7) and (10)is known[1]:

has been used with great success in solving various steady ~

and tlme-depen(_jent flows (see, for examp#9] and the w(y, 1) = 2 Z} sin (k) s (11)
references therein). e

Hence, the flow ceases theoretically in an infinite amount of

3. Flow problems and governing equations time. If the fluid is a Bingham plastid > 0), however, the
flow comes to rest in a finite amount of time, as demonstrated
The governing equations along with the boundary and ini- by Huilgol et al.[3], who provide the following upper bound
tial conditions of the three time-dependent, one-dimensional for the dimensionless stopping time:
Bingham-plastic flows of interest are discussed below. The 4 2 0
theoretical upper bounds of Glowing®] and Huilgol et al. Ty < —In|1+ 7 lux(y, Oll (12)
[3] for the stopping times are also presented. 0 Bn
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Fig. 1. Flow problems under study: (a) cessation of plane Couette flow; (b) cessation of plane Poiseuille flow; (c) cessation of axisymmetediBaiseuill

where

1 1/2
llux(y, O)I = l/o u%(y, 0) d)’1 :

From Eq.(10), it is easily deduced thdji.(y, 0)|| = 1/+/3.

(13)

3.2. Cessation of plane Poiseuille flow

The geometry of the plane Poiseuille flow is depicted in
Fig. 1b. The steady-state solution for the ideal (i.e. nonregu-
larized) Bingham fluid is given by
(—2)" (H - yo)%.
(—2) (H2=y)—2(H-y), yo<y<H,

; ﬁ 0<y<yo,
ux(y)z i

2p
(14)
where (dp/dx)’ is the steady-state pressure gradient, and

70 H
= — <
(—ap/ox)s

denotes the point at which the material yields. Note that flow
occurs only if dp/dx)* > toH. The volumetric flow rate is
2w

given by
-5 () () 2] e

whereW is the width of the plates (in thedirection).

Yo (15)

1

We assume that at= 0 the velocityu . (y, 7) is given by the
steady-state solutigfl4)and that at = O™ the pressure gra-
dient is reduced either to zero or tedp/dx) < (—ap/dx)*,
in which case the flow is expected to stop. The evolution of
the velocity is again governed by thamomentum equation.
Using the same scales as in the plane Couette flow, With
denoting now the mean velocity in the slit, the dimensionless
form of thex-momentum equation is obtained:

ot

o

0Tyx
f + 8y )

17)

wheref denotes the dimensionless pressure gradient. The
dimensionless form of the constitutive equation is given by
Eq. (7), and that of the steady velocity profi#4)is:

1 2
5 /51— yo)*, 0<y<yo
WO =5 o (18)
5 (L=y)—Bn(l—-y), yo<y<=<1,
where
Bn
Yo= — (29)
fS

and f* is the dimensionless pressure gradient corresponding
to —(dp/0x)*. It turns out thatyg is the real root of the cubic
equation:

2
3
—3(1+= 2=0. 20
Y0 <+Bn)yo+ (20)
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It is clear that a steady flow in the channel occurs only if thez-momentum equation
f% > Bn.The dimensionless boundary and initial conditions

for the time-dependent problem read: % =f+ }83(””)’ (27)
r or
BLX(Q =0 >0, ux(1,1)=0, >0, wherefis the dimensionlgss .pressure.gra_diept. The dimen-
ay sionless form of the constitutive equation is given by
. { n[1 — exp-My)] 4 1} Bz (28)
In the case of Newtonian flowB: = 0), the time-dependent 4 ar
solution when the pressure gradientis suddenly reduced fromynerej, = |au. /o],
fStofis given by[1]
Bn = R (29)
0= 3L B(1- )5 0 G
ux(y,t) = 5-——(1—-y — |\1-= 3
2 fs 3 fs — (Zk _ 1)3 and
2k — 1) (2k — 1272 _mv (30)
X COS[Zy exp ft s R
(22) The steady velocity profil@24)takes the dimensionless form
which indicates that the flow stops after an infinite amount of Rk %lf‘v(l — ro)z, 0<r<r,
time onlywhenf = 0. Inthe case of a Bingham plastig/{ > V= 12— Bn(l— ), ro<r=<1 (31)
0), Huilgol et al.[3] provide the following upper bound for 4 ' - -
the stopping time: whererg satisfies
4 7% |lux(y, O)| 2Bn
Tr<—in|14 -2 B 23 ro = (32)
r< i +4Bn_f . f<Bn, (23) Iz

and f* is the dimensionless pressure gradient corresponding

whereu,(y, 0) = u(y) is given by Eq(18). The above bound !
(- 0) ()isg yEa(18) to —(dp/9z)*. We note thatyg is a real root of:

is valid whenf < Bn; otherwise, the flow will not stop.
3
3.3. Cessation of axisymmetric Poiseuille flow ”3 -4 <1 + Bn> ro+3=0. (33)

The geometry of the axisymmetric Poiseuille flow is Clearly, a steady flow in the tube occurs onlyfif > 2Bn.
depicted in Fig. 1c. The steady-state solution for the ideal The growth ofrg with Bn is illustrated inFig. 2, in which
Bingham model is given by steady-state velocity profiles calculated for various Bingham

1 o\ * 5 numbers are shown.
@(—37) (R—ro)%, 0<r=no,

ul(r)= s
¢ i(—(z)—’;) (R2—r2)—;—°(R—r), ro<r <R,

(24) Bn=0 (Newtonian fluid)

where (dp/dz)* is the constant pressure gradient, and the
yield point is given by

15F
_ 210 <R (25) Bn=10
~ (—dp/oz)*

The volumetric flow rate is given by

o g ()RR R e -

We assume that at= 0 the velocityu,(r, ) is given by the
steady-state solution and thatat 0" the pressure gradient
isreduced eitherto zeroortefp/d9z) < (—ap/dz)°. Scaling 0 02 04 0.6 o8
the lengths by the tube radi® the velocity by the mean

velocity ‘./' the pressure and th? Stre5§ Components‘bSR, Fig. 2. Steady velocity distributions for various Bingham numbers in
and the time by R?/11, we obtain the dimensionless form of  axisymmetric Poiseuille flowt = 200.

ro

Bn=eo (Solid)




M. Chatzimina et al. / J. Non-Newtonian

The dimensionless boundary and initial conditions read:

du
or
uz(r, 0) = ui(r),

The time-dependent solution for Newtonian floBi(= 0),
when the pressure gradient is suddenly reduced ffoto f,

is given by[1]

u,(r, 1) = ZJJ:S

where Jp and J; are respectively the zeroth- and first-order
Bessel functions of the first kind, angl, k = 1,2, ... are
the roots ofJyp. In the case of a Bingham plastid® > 0),
Glowinski [2] provides the following upper bound for the
stopping time:

0,)=0, >0, u(1,t)=0, >0,

O<r<l1 (34)

1- L

fS

Jo(axr)

—a’t
adJa(a)

(1-r%)+16 < > :
k=1

(39)

1 [[u-(r, O)
T —In|l+r——— 2B
ffkln[+12Bn_f ., f<2Bn, (36)
whereu_(r, 0) = ui(r) is given by Eq(31),
1 1/2
M@W=P/ﬁ@wﬂ (37)
0

andAa; is the smallest (positive) eigenvalue of the problem:
1d < dw

rdr VE

Itis easily found that, = a% ~ 57831, wherey is the least
root of Jo(x), with the corresponding eigenfunction being
given bywi(x) = Jo(arx). Therefore,

2 lluz(r, O)l
O opn £
2Bn — f

) +iw =0, w(0)=w(l)=0. (38)

Ty < L In
f= a%
The bound(39) holds only whenf < 2Bn; otherwise, the

flow will not stop.

{1 + } ., f<2Bn. (39)

4. Numerical results

Since there are no analytical solutions to the flows under

study in the case of the Bingham plastic or the Papanastasiou

model, we have used a nhumerical method, namely the finite
element method with quadratic{P- C°) elements for the
velocity. For the spatial discretization, we used the Galerkin
form of the momentum equation. For the time discretiza-
tion, we used the standard fully-implicit (Euler backward-
difference) scheme. At each time step, the nonlinear system
of discretized equations was solved by using the Newton
method. In the case of Couette flow, a 200-element mesh
refined near the two plates has been used. In Poiseuille flows
the mesh consisted of 180 elements and was refined nea
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the wall. Our numerical experiments with meshes of differ-
ent refinement (ranging from 50 up to 400 elements) showed
that the solutions obtained with the aforementioned optimal
meshes are convergent. The effect of the time step has also
been studied. In general, the time step should be reduced
as the Bingham number or the regularization paraméter

is increased, in order not only to ensure satisfactory accu-
racy but, more importantly, to ensure the convergence of the
Newton—Raphson process which becomes very slow. In gen-
eral, forM = 500, the time step ranged from19(Bn = 0)

to 108 (Bn = 20); these values were further reduced by
the code whenever the Newton—Raphson process failed to
converge. The code has also been tested by solving first the
Newtonian flows and making comparisons with the analyti-
cal solutions. In all three problems, the agreement between
the theory and the calculations was excellent.

4.1. Cessation of plane Couette flow

Figs. 3-5show the evolution of the velocity faBn = 0
(Newtonian fluid), 2 and 20, respectively. The growth param-
eter has been taken to B¢ = 200. The numerical solution
in Fig. 3compares very well with the analytical soluti¢iil)
for the Newtonian flow. The numerical solutions for Bing-
ham flow Figs. 4 and } show that a small unyielded region,
where the velocity is flat, appears near the lower plate that
moved prior tor = 0. Note that for high Bingham numbers
(i.e., Bn > 5), very small time steps (of the order of 1%)
were necessary in order to get convergence in the early stages
of cessation. The size of the unyielded region increases as the
time proceeds. Its left limit initially moves to the right but at
higher times starts moving to the left, as the flow approaches
complete cessation; s¢4] for an explanation of this phe-
nomenon.

0.8

0.6

0.4

0.2

Fig. 3. Evolution of the velocity in cessation of plane Couette flow of a New-
tonian fluid. Comparison of the analytical (solid lines) with the numerical
(dashed lines) solutions.
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Fig. 4. Evolution of the velocity in cessation of plane Couette flow of a Fig. 6. Evolution of the volumetric flow rate during the cessation of plane
Bingham fluid withBn = 2 andM = 200. Couette flow of a Bingham fluid with/ = 200 and various Bingham num-
bers.

Fig. 6shows the evolution of the volumetric flow rate,
1 isons with the theoretical upper bou(i®), we consider the
o) = / ux(y, 7) dy, (40) numerical stopping time as that whéh= 10~° is reached.
0 As shown inFig. 8 for moderate and higher Bingham num-
for various Bingham numbers. These curves show the dra_bers the numerical stopping time is just below the theoretical

matic effect ofthe yield stress, which accelerates the cessatiortPPer bound, which indicates that the latter is tight. The smalll
of the flow. In the Newtonian case&f = 0) and for small discrepancies observed for low Bingham numbers are due to

Bingham numbers the decay of the volumetric flow rate is the fact_ that the_ value of the regularization param_Me's
exponential, at least initially. At higher Bingham numbers, "Otsufficiently high. Forvery smalln, the effect o/ is not

the decay o0 becomes polynomial and eventually linear. crucia}l, since the mater?al is pragtical_ly Nemnoniaq, which
The times at whichp = 103 and 10°5 are plotted as func- explains why the numerical stopping time falls again below

tions of the Bingham number fig. 7. The two times coincide  the theoretical upper bound, as it should. The effectaé
for moderate or large Bingham numbers, which indicates that discussed in more detail in the case of the plane Poiseuille
the flow indeed stops at a finite time. In order to make compar- flow.

0.000049

22 |
08 0.000226 _ 0=107%

0.00140
0.6

0.4 0.00400 .

0.00856

00 A L | L T T e e
) 0.2 0.4 0.6 0.8 1 0.0001

Fig. 5. Evolution of the velocity in cessation of plane Couette flow of a Fig. 7. Calculated times fap = 102 and 10°° in cessation of plane Cou-
Bingham fluid withBn = 20 andM = 200. ette flow of a Bingham fluid with/ = 200.
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t=0

123

Theoretical
upper
0.1 bound
Numerical
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time

(0=10%)

PRI BT SEETrY S EErY S BT P 05 | | | L
0.0001 0.01 1 100 055 02 04 0% 0.8 i

0.01

Fig. 8. Comparison of the computed stopping tirde<£ 10-5) in cessation Fig. 10. Evolution of the velocity in cessation of plane Poiseuille flow of a
of plane Couette flow of a Bingham fluid with the theoretical upper bound Bingham fluid withBr = 1 andM = 200.
(12); M = 200.
demonstrated ifrig. 15 which shows the results obtained
with M = 200 and 500, the calculated stopping times are
not so sensitive td&/ when the Bingham number is moder-
Figs. 9—12show the evolution ofu,(y, ) for Bn =0 ate or high, i.eBn > 1. For smaller Bingham numbers, i.e.
(Newtonian case), 1, 5 and 20.Hig. 13 we see the evolution  10-3 < Bn < 1, the time required for the volumetric flow
of the calculated volumetric flow rate for various Bingham rate to become I is reduced a1 is increased. For very
numbers. As in plane Couette flow, the decay of the volumet- small Bingham numbers, the fluid is essentially Newtonian,
ric flow rate is almost exponential for small Bingham numbers and therefore the value @f has no effect on the calcula-
and becomes polynomial at highew values.Fig. 14shows tions. Hence, in order to get convergent results in the range
plots of the times required for the volumetric flow rate to 10-3 < Bn < 1, the value of\ has to be increased further.
become 102 and 10°° versus the Bingham number for both  However, our studies showed that whieh= 1000, conver-
plane and axisymmetric Poiseuille flows (with = 200). gence difficulties are observed whén > 0.01. Reducing
Before proceeding to the comparisons with the theoret- the time step might extend the calculations to a slightly higher
ical upper bound23), let us investigate the effect of the Bn, but beyond a criticaBn value the required time step
growth parameteM on the calculated stopping times. As becomes very small and the accumulated round-off errors

4.2. Cessation of plane Poiseuille flow

2 T T T T 2

=0

0.06

0.5 F 008
0.1
0.12
0.14

0

3 1 1 1 1 R 1 1 1 1
035 0.2 0.4 0.6 0.8 1 0.5, 0.2 0.4 0.6 0.8 1

Fig. 9. Evolution of the velocity in cessation of plane Poiseuille flow of a Fig. 11. Evolution of the velocity in cessation of plane Poiseuille flow of a
Newtonian fluid. Bingham fluid withBn = 5 andM = 200.
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0.02
05
0.03 Ol E
0.04
O
05 L ) | L e —
0 0.2 04 0.6 0.8 1 0.0001 0.01 1 100
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Fig. 12. Evolution of the velocity in cessation of plane Poiseuille flow of a  Fig. 14. Calculated times fap = 10~3 and 10°° in cessation of plane and
Bingham fluid withBn = 20 andM = 200. axisymmetric Poiseuille flows of Bingham fluids witi = 200.

are so high so that the error in the calculated stopping time erate and high Bingham numbers. The small discrepancies
is higher than that corresponding to a smaller valudfof observed for small values of the Bingham number are due to
As a conclusion, decreasing the time step is not the best waythe fact thatV is not sufficiently high. We have also exam-
to obtain good results faif > 500. If results for small (but  ined the case in which the imposed pressure gragdismiot
not vanishingly small) Bingham numbers and laideare zero. An ideal Bingham plastic stops after a finite time if
necessary, then continuationmust be used at each time  f < Bn and reaches a new steady-stat¢ if Bn (with the
step. According to our numerical experiments, using such avolumetric flow rate corresponding to the new valuef)of
continuation will increase the computational time by at least This is not the case with a regularized Bingham fluid. Since
10 times. Since we are not interested in such small values ofM is finite, the flow will reach a new steady-state in which
Bn, such calculations have not been pursued. the volumetric flow rate may be small but not zero. To illus-
A comparison between theory and calculations is provided trate this effect, we considered the case in wiieh= 1 and
in Fig. 16for the casef = 0 (i.e., when the imposed pres- M = 500 and carried out simulations for different values of
sure gradient is set to zero). Again, the computed stoppingf. In Fig. 17a, we see the evolution of the volumetric flow rate
time is just below the theoretical upper boui28) for mod- for different values of. Fig. 17 is a zoom of the previous
figure showing that indeed the volumetric flow rate reaches a

10 —m—r——— 77—

F o=

0.4

T T T

100 S EN S U R SR S——
0.0001 0.01 1 100

Fig. 13. Evolution of the volumetric flow rate during the cessation of plane
Poiseuille flow of a Bingham fluid witi/ = 200 and various Bingham Fig. 15. Calculated times f@p = 103 and 10°° in cessation of plane Poi-
numbers. seuille flow of Bingham fluids witli = 200 (dashed) antl = 500 (solid).
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Theoretical
upper
bound
Numerical

stopping
3 time

(0=10"%)

gorb—t e e
0.0001 0.01 ]

Fig.16. Comparison of the computed stopping tifde£ 10-5)in cessation
of plane Poiseuille flow of a Bingham fluid with the theoretical upper bound
(23); f = 0andM = 500.

0.8

0.6

0.4

0.8 1 1.

[

0.015 T

0.01

0.005
0.5

0 0.5 1

Fig. 17. (a) Evolution of the volumetric flow rate for various values of the
imposed pressure gradightb) detail of the same plot showing that a finite
volumetric flow rate is reached whein> 0; plane Poiseuille flow witlBn =

1 andM = 500.

125

0.0015 T T T T

o

0,001

0.0005

0.4 0.6

Fig. 18. Volumetric flow rates reached with the regularized Papanastasiou
model vs. the imposed pressure gradfeplane Poiseuille flowBrn = 1 and
M = 500.

Ty

(%]
T

Bound for ideal Bingham fluid

Regularized Bingham fluid (Q=10-3)

0 I 1 1 1
0 0.2 0.4 0.6 0.8 1

f

Fig. 19. Comparison of the times required to regck= 103 in cessation
of plane Poiseuille flow of a regularized Bingham fluid with the theoretical
upper bound?23)for an ideal Bingham fluidBn = 1 andM = 500.

=0

0.4 0.6 0.8 1

Fig. 20. Evolution of the velocity in cessation of axisymmetric Poiseuille

flow of a Newtonian fluid.
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0.01
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Fig. 21. Evolution of the velocity in cessation of axisymmetric Poiseuille

flow of a Bingham fluid withBr — 1 andM — 200. Fig. 23. Evolution of the velocity in cessation of axisymmetric Poiseuille

flow of a Bingham fluid withBn = 20 andM = 200.

finite value whenf # 0. This value may be reduced further ghow the evolution ofi, for M = 200 andBn = 0 (New-

by increasing the value @f. The new volumetric flow rateis  tgnian case), 1, 5 and 26ig. 24 shows in detail how the
plotted againsfin Fig. 18 Finally, inFig. 19we comparethe  yelocity profile changes near the wall whBn = 20. A sec-
times required to reacl = 103 with the theoretical upper  ond unyielded region of a smaller size appears near the wall,
bound(23). For smaller values of, the numerical results i which the velocity is zero. The growth of this region can-
move closer to the theoretical upper bound, but in a smaller gt pe explained physically and is considered as a numerical
range off, which is easily deduced froffiig. 18 The devi-  aptifact due to the regularization of the constitutive equation.
ations between the theoretical predictions and the numerical |, Fig. 25 we see the evolution of the calculated volumet-
solutions become larger as the value of the imposed pressurgic flow rate (scaled by ),

gradientis increased. These, however, can be further reduced

. . 1
by increasing the value af. o) = / w,(r, tyr dr, (41)
0

4.3. Cessatio S etric Poiseuille flo . . .
essation of axisymmetric Poiseuille flow for M = 200 and various Bingham numbers. As in plane

The results for the axisymmetric Poiseuille flow are very Poiseuille flow, the cessation of the flow is accelerated as the
similar to those obtained for the planar caBégs. 20-23
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Fig. 24. Detail near the wall of the evolution of the velocity in cessation of
Fig. 22. Evolution of the velocity in cessation of axisymmetric Poiseuille axisymmetric Poiseuille flow of a Bingham fluid withn = 20 andM =
flow of a Bingham fluid withBn = 5 andM = 200. 200.
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early for high Bingham numbers. Unlike their counterparts

in a Newtonian fluid, the corresponding times for complete

cessation are finite, in agreement with theory. The numeri-
cal stopping times are found to be in very good agreement
with the theoretical upper bounds provided in R¢£53],

for moderate and higher Bingham numbers. Some minor dis-
crepancies observed for rather low Bingham numbers can
be reduced by increasing the regularization parameter intro-
duced by the Papanastasiou model.

A noteworthy difference between the predictions of the
ideal and the regularized Bingham model is revealed when
the imposed pressure gradient is nonzero and below the crit-
ical value at which a nonzero steady-state Poiseuille solution
exists. In contrast with the ideal Bingham flow which reaches
cessationin afinite time, the regularized flow reaches a steady
velocity profile corresponding to a small but nonzero volu-
metric flow rate. The value of the latter may be reduced by

Fig. 25. Evolution of the volumetric flow rate during the cessation of axisym- increasing the value of the regularization paramefeput

metric Poiseuille flow of a Bingham fluid withf = 200 and various Bing- will always be nonzero.
ham numbers.
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