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Abstract

We solve the one-dimensional cessation Couette and Poiseuille flows of a Bingham plastic using the regularized constitutive equation
proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. The numerical calculations confirm
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revious theoretical findings that the stopping times are finite when the yield stress is nonzero. The decay of the volumetric flow r
s exponential in the Newtonian case, is accelerated and eventually becomes linear as the yield stress is increased. In all flows
alculated stopping times are just below the theoretical upper bounds, which indicates that the latter are tight.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In viscometric flows, one can bring a fluid to a halt by
etting the moving boundary to rest in the case of Couette
ows, or by reducing the applied pressure gradient to zero
n Poiseuille flows. In a Newtonian fluid, the correspond-
ng steady velocity fields decay to zero in an infinite amount
f time [1]. In a Bingham plastic, the velocity fields go to
ero in a finite time, which emphasizes the role of the yield
tress[2,3]. Glowinski[2] and Huilgol et al.[3] have provided
xplicit theoretical finite upper bounds on the time for a Bing-
am material to come to rest in various flows, such as the plane
nd circular Couette flows and the plane and axisymmetric
oiseuille flows. To be specific, each upper bound depends on

he density, the viscosity, the yield stress and the least eigen-
alue of the Laplacian operator on the flow domain[2,3]. As
or the underlying cause for the finite extinction time, it can
e shown that the yield surface moves laterally with a finite
peed bringing the fluid to a halt, and that kinematical con-

∗ Corresponding author. Tel.: +357 22892612; fax: +357 22892601.
E-mail address: georgios@ucy.ac.cy (G.C. Georgiou).

ditions play a crucial role[4]. In a similar fashion, the upp
bounds derived by Huilgol[5] for the cessation of axisym
metric Poiseuille flows with more general viscoplastic flu
must be caused by the lateral movement of the yield sur

The objective of the present work is to compute num
ically the stopping times and make comparisons with
theoretical upper bounds provided in the literature for
cessation of three flows of a Bingham fluid: (a) the pl
Couette flow; (b) the plane Poiseuille flow; (c) the axisy
metric Poiseuille flow. Instead of the ideal Bingham-pla
constitutive equation, we employ the regularized equa
proposed by Papanastasiou[6], to avoid the determinatio
of the yielded and unyielded regions in the flow domain
should be noted that preliminary results for the case o
plane Poiseuille flow can also be found in Ref.[7].

The paper is organized as follows. In Section2, we dis-
cuss the regularized Papanastasiou equation for a Bin
plastic. In Section3, we present the dimensionless forms
the governing equations for the three flows of interest a
with the corresponding theoretical upper bounds. In Se
4, we present and discuss representative numerical r
for all flows. The numerical stopping times are just be

377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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the theoretical upper bounds, i.e. the latter are tight. Some
discrepancies are observed only for low Bingham numbers
when the growth parameter in the Papanastasiou model is not
sufficiently high. Finally, Section5 contains the conclusions
of this work.

2. Constitutive equation

Letu andτ denote the velocity vector and the stress tensor,
respectively, anḋγ denote the rate-of-strain tensor,

γ̇ ≡ ∇u + (∇u)T, (1)

where∇u is the velocity-gradient tensor, and the superscript
T denotes its transpose. The magnitudes ofγ̇ andτ are respec-
tively defined as follows:

γ̇ =
√

1

2
II γ̇ =

√
1

2
γ̇ : γ̇ and τ =

√
1

2
II τ =

√
1

2
τ : τ,

(2)

where II stands for the second invariant of a tensor.
In tensorial form, the Bingham model is written as follows:

{
γ̇ = 0, τ ≤ τ0,
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3.1. Cessation of plane Couette flow

The geometry of the plane Couette flow is shown inFig.
1a. The steady-state solution is given by

us
x(y) =

(
1 − y

H

)
V, (5)

whereV is the speed of the lower plate (the upper one is
kept fixed) andH is the distance between the two plates.
We assume that att = 0, the velocityux(y, t) is given by the
above profile and that att = 0+ the lower plate stops moving.
To nondimensionalize thex-momentum equation, we scale
the lengths byH, the velocity byV, the stress components
by µV/H , and the time byρH2/µ, whereρ is the constant
density of the fluid. With these scalings, thex-momentum
equation becomes

∂ux

∂t
= ∂τyx

∂y
. (6)

The dimensionless form of the Papanastasiou model is
reduced to

τyx =
{

Bn[1 − exp(−Mγ̇)]

γ̇
+ 1

}
∂ux

∂y
, (7)

whereγ̇ = |∂ux/∂y|,

B

i

M

i
e as

f

I l
s
(

u

H nt of
t e
fl ated
b d
f

T

τ =
(

τ0
γ̇

+ µ
)

γ̇, τ ≥ τ0,
(3)

hereτ0 is the yield stress, andµ is a constant viscosity.
In any flow of a Bingham plastic, determination of th

ielded (τ ≥ τ0) and unyielded (τ ≤ τ0) regions in the flow
eld is necessary, which leads to considerable computatio
ifficulties in the use of the model. These are overco
y using the regularized constitutive equation proposed
apanastasiou[6]:

=
{

τ0[1 − exp(−m γ̇)]

γ̇
+ µ

}
γ̇, (4)

herem is a stress growth exponent. For sufficiently lar
alues of the regularization parameterm, the Papanastasiou
odel provides a satisfactory approximation of the Bingh
odel, while at the same time the need of determining

ielded and the unyielded regions is eliminated. The mo
as been used with great success in solving various ste
nd time-dependent flows (see, for example,[8,9] and the
eferences therein).

. Flow problems and governing equations

The governing equations along with the boundary and
ial conditions of the three time-dependent, one-dimensio
ingham-plastic flows of interest are discussed below. T

heoretical upper bounds of Glowinski[2] and Huilgol et al.
3] for the stopping times are also presented.
n ≡ τ0H

µV
(8)

s the Bingham number, and

≡ mV

H
(9)

s the dimensionless growth parameter.
The dimensionless boundary and initial conditions ar

ollows:

ux(0, t) = 0, t > 0, ux(1, t) = 0, t ≥ 0,

ux(y, 0) = 1 − y, 0 ≤ y ≤ 1. (10)

n the case of a Newtonian fluid (Bn = 0), the analytica
olution of the time-dependent flow, governed by Eqs.(6),
7) and (10), is known[1]:

x(y, t) = 2

π

∞∑
k=1

1

k
sin (kπy) e−k2π2t . (11)

ence, the flow ceases theoretically in an infinite amou
ime. If the fluid is a Bingham plastic (Bn > 0), however, th
ow comes to rest in a finite amount of time, as demonstr
y Huilgol et al.[3], who provide the following upper boun

or the dimensionless stopping time:

f ≤ 4

π2 ln

[
1 + π2

2

‖ux(y, 0)‖
Bn

]
, (12)
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Fig. 1. Flow problems under study: (a) cessation of plane Couette flow; (b) cessation of plane Poiseuille flow; (c) cessation of axisymmetric Poiseuille flow.

where

‖ux(y, 0)‖ =
[∫ 1

0
u2

x(y, 0) dy

]1/2

. (13)

From Eq.(10), it is easily deduced that‖ux(y, 0)‖ = 1/
√

3.

3.2. Cessation of plane Poiseuille flow

The geometry of the plane Poiseuille flow is depicted in
Fig. 1b. The steady-state solution for the ideal (i.e. nonregu-
larized) Bingham fluid is given by

us
x(y) =




1
2µ

(− ∂p

∂x

)s
(H − y0)2, 0 ≤ y ≤ y0,

1
2µ

(− ∂p

∂x

)s
(H2 − y2) − τ0

µ
(H − y), y0 ≤ y ≤ H,

(14)

where (−∂p/∂x)s is the steady-state pressure gradient, and

y0 = τ0

(−∂p/∂x)s
< H (15)

denotes the point at which the material yields. Note that flow
occurs only if (−∂p/∂x)s > τ0H . The volumetric flow rate is
given by

Q

( )s [ ( ) ( )3
]

w

We assume that att = 0 the velocityux(y, t) is given by the
steady-state solution(14)and that att = 0+ the pressure gra-
dient is reduced either to zero or to (−∂p/∂x) < (−∂p/∂x)s,
in which case the flow is expected to stop. The evolution of
the velocity is again governed by thex-momentum equation.
Using the same scales as in the plane Couette flow, withV
denoting now the mean velocity in the slit, the dimensionless
form of thex-momentum equation is obtained:

∂ux

∂t
= f + ∂τyx

∂y
, (17)

where f denotes the dimensionless pressure gradient. The
dimensionless form of the constitutive equation is given by
Eq.(7), and that of the steady velocity profile(14) is:

us
x(y) =

{ 1
2f s(1 − y0)2, 0 ≤ y ≤ y0,

1
2f s(1 − y2) − Bn(1 − y), y0 ≤ y ≤ 1,

(18)

where

y0 = Bn

f s
(19)

andf s is the dimensionless pressure gradient corresponding
to −(∂p/∂x)s. It turns out thaty0 is the real root of the cubic
equation:

y

= 2W

3µ
−∂p

∂x
H3 1 − 3

2

y0

H
+ 1

2

y0

H
, (16)

hereW is the width of the plates (in thez-direction).

3
0 − 3

(
1 + 2

Bn

)
y0 + 2 = 0. (20)
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It is clear that a steady flow in the channel occurs only if
f s > Bn. The dimensionless boundary and initial conditions
for the time-dependent problem read:

∂ux

∂y
(0, t) = 0, t ≥ 0, ux(1, t) = 0, t ≥ 0,

ux(y, 0) = us
x(y), 0 ≤ y ≤ 1. (21)

In the case of Newtonian flow (Bn = 0), the time-dependent
solution when the pressure gradient is suddenly reduced from
f s to f is given by[1]

ux(y, t) = 3

2

f

f s
(1− y2) + 48

π3

(
1− f

f s

) ∞∑
k=1

(−1)k+1

(2k − 1)3

× cos

[
(2k − 1)π

2
y

]
exp

[
− (2k − 1)2π2

4
t

]
,

(22)

which indicates that the flow stops after an infinite amount of
time only whenf = 0. In the case of a Bingham plastic (Bn >

0), Huilgol et al.[3] provide the following upper bound for
the stopping time:

Tf ≤ 4

π2 ln

[
1 + π2

4

‖ux(y, 0)‖
Bn − f

]
, f < Bn, (23)
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thez-momentum equation

∂uz

∂t
= f + 1

r

∂

∂r
(rτrz), (27)

wheref is the dimensionless pressure gradient. The dimen-
sionless form of the constitutive equation is given by

τrz =
{

Bn[1 − exp(−Mγ̇)]

γ̇
+ 1

}
∂uz

∂r
, (28)

whereγ̇ = |∂uz/∂r|,

Bn ≡ τ0R

µV
, (29)

and

M ≡ mV

R
. (30)

The steady velocity profile(24)takes the dimensionless form

us
z(r) =

{ 1
4f s(1 − r0)2, 0 ≤ r ≤ r0,

1
4f s(1 − r2) − Bn(1 − r), r0 ≤ r ≤ 1,

(31)

wherer0 satisfies

r0 = 2Bn

f s
(32)

a ding
t

r

C
T
s ham
n

F s in
a

hereux(y, 0) = us
x(y) is given by Eq.(18). The above boun

s valid whenf < Bn; otherwise, the flow will not stop.

.3. Cessation of axisymmetric Poiseuille flow

The geometry of the axisymmetric Poiseuille flow
epicted in Fig. 1c. The steady-state solution for the i
ingham model is given by

s
z(r) =




1
4µ

(
− ∂p

∂z

)s

(R − r0)2, 0 ≤ r ≤ r0,

1
4µ

(
− ∂p

∂z

)s

(R2 − r2) − τ0
µ

(R − r), r0 ≤ r ≤ R,

(24)

here (−∂p/∂z)s is the constant pressure gradient, and
ield point is given by

0 = 2τ0

(−∂p/∂z)s
< R. (25)

he volumetric flow rate is given by

= π

8µ

(
−∂p

∂z

)s

R4
[
1 − 4

3

( r0

R

)
+ 1

3

( r0

R

)4
]

. (26)

e assume that att = 0 the velocityuz(r, t) is given by the
teady-state solution and that att = 0+ the pressure gradie

s reduced either to zero or to (−∂p/∂z) < (−∂p/∂z)s. Scaling
he lengths by the tube radiusR, the velocity by the mea
elocityV, the pressure and the stress components byµV/R,
nd the time byρR2/µ, we obtain the dimensionless form
ndf s is the dimensionless pressure gradient correspon
o −(∂p/∂z)s. We note thatr0 is a real root of:

4
0 − 4

(
1 + 3

Bn

)
r0 + 3 = 0. (33)

learly, a steady flow in the tube occurs only iff s > 2Bn.
he growth ofr0 with Bn is illustrated inFig. 2, in which
teady-state velocity profiles calculated for various Bing
umbers are shown.

ig. 2. Steady velocity distributions for various Bingham number
xisymmetric Poiseuille flow;M = 200.
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The dimensionless boundary and initial conditions read:

∂uz

∂r
(0, t) = 0, t ≥ 0, uz(1, t) = 0, t ≥ 0,

uz(r, 0) = us
z(r), 0 ≤ r ≤ 1. (34)

The time-dependent solution for Newtonian flow (Bn = 0),
when the pressure gradient is suddenly reduced fromf s to f,
is given by[1]

uz(r, t) = 2
f

f s
(1− r2) + 16

(
1− f

f s

) ∞∑
k=1

J0(akr)

a3
kJ1(ak)

e−a2
k
t,

(35)

whereJ0 andJ1 are respectively the zeroth- and first-order
Bessel functions of the first kind, andak, k = 1, 2, . . . are
the roots ofJ0. In the case of a Bingham plastic (Bn > 0),
Glowinski [2] provides the following upper bound for the
stopping time:

Tf ≤ 1

λ1
ln

[
1 + λ1

‖uz(r, 0)‖
2Bn − f

]
, f < 2Bn, (36)

whereuz(r, 0) = us
z(r) is given by Eq.(31),

‖uz(r, 0)‖ =
[

2
∫ 1

u2
z(r, 0)r dr

]1/2

(37)

a m:

I t
r ing
g

T

T e
fl

4

nder
s asiou
m finite
e e
v rkin
f iza-
t rd-
d stem
o ton
m esh
r flows,
t near

the wall. Our numerical experiments with meshes of differ-
ent refinement (ranging from 50 up to 400 elements) showed
that the solutions obtained with the aforementioned optimal
meshes are convergent. The effect of the time step has also
been studied. In general, the time step should be reduced
as the Bingham number or the regularization parameterM
is increased, in order not only to ensure satisfactory accu-
racy but, more importantly, to ensure the convergence of the
Newton–Raphson process which becomes very slow. In gen-
eral, forM = 500, the time step ranged from 10−4 (Bn = 0)
to 10−6 (Bn = 20); these values were further reduced by
the code whenever the Newton–Raphson process failed to
converge. The code has also been tested by solving first the
Newtonian flows and making comparisons with the analyti-
cal solutions. In all three problems, the agreement between
the theory and the calculations was excellent.

4.1. Cessation of plane Couette flow

Figs. 3–5show the evolution of the velocity forBn = 0
(Newtonian fluid), 2 and 20, respectively. The growth param-
eter has been taken to beM = 200. The numerical solution
in Fig. 3compares very well with the analytical solution(11)
for the Newtonian flow. The numerical solutions for Bing-
ham flow (Figs. 4 and 5), show that a small unyielded region,
w that
m rs
(
w tages
o as the
t at
h ches
c e-
n

F ew-
t rical
(

0

ndλ1 is the smallest (positive) eigenvalue of the proble

1

r

d

dr

(
r
dw

dr

)
+ λw = 0, w′(0) = w(1) = 0. (38)

t is easily found thatλ1 = a2
1 
 5.7831, wherea1 is the leas

oot of J0(x), with the corresponding eigenfunction be
iven byw1(x) = J0(a1x). Therefore,

f ≤ 1

a2
1

ln

[
1 + a2

1
‖uz(r, 0)‖
2Bn − f

]
, f < 2Bn. (39)

he bound(39) holds only whenf < 2Bn; otherwise, th
ow will not stop.

. Numerical results

Since there are no analytical solutions to the flows u
tudy in the case of the Bingham plastic or the Papanast
odel, we have used a numerical method, namely the
lement method with quadratic (P2 − C0) elements for th
elocity. For the spatial discretization, we used the Gale
orm of the momentum equation. For the time discret
ion, we used the standard fully-implicit (Euler backwa
ifference) scheme. At each time step, the nonlinear sy
f discretized equations was solved by using the New
ethod. In the case of Couette flow, a 200-element m

efined near the two plates has been used. In Poiseuille
he mesh consisted of 180 elements and was refined
here the velocity is flat, appears near the lower plate
oved prior tot = 0. Note that for high Bingham numbe

i.e., Bn > 5), very small time steps (of the order of 10−9)
ere necessary in order to get convergence in the early s
f cessation. The size of the unyielded region increases

ime proceeds. Its left limit initially moves to the right but
igher times starts moving to the left, as the flow approa
omplete cessation; see[4] for an explanation of this ph
omenon.

ig. 3. Evolution of the velocity in cessation of plane Couette flow of a N
onian fluid. Comparison of the analytical (solid lines) with the nume
dashed lines) solutions.
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Fig. 4. Evolution of the velocity in cessation of plane Couette flow of a
Bingham fluid withBn = 2 andM = 200.

Fig. 6shows the evolution of the volumetric flow rate,

Q(t) =
∫ 1

0
ux(y, t) dy, (40)

for various Bingham numbers. These curves show the dra-
matic effect of the yield stress, which accelerates the cessation
of the flow. In the Newtonian case (Bn = 0) and for small
Bingham numbers the decay of the volumetric flow rate is
exponential, at least initially. At higher Bingham numbers,
the decay ofQ becomes polynomial and eventually linear.
The times at whichQ = 10−3 and 10−5 are plotted as func-
tions of the Bingham number inFig. 7. The two times coincide
for moderate or large Bingham numbers, which indicates that
the flow indeed stops at a finite time. In order to make compar-

F of a
B

Fig. 6. Evolution of the volumetric flow rate during the cessation of plane
Couette flow of a Bingham fluid withM = 200 and various Bingham num-
bers.

isons with the theoretical upper bound(12), we consider the
numerical stopping time as that whenQ = 10−5 is reached.
As shown inFig. 8, for moderate and higher Bingham num-
bers the numerical stopping time is just below the theoretical
upper bound, which indicates that the latter is tight. The small
discrepancies observed for low Bingham numbers are due to
the fact that the value of the regularization parameterM is
not sufficiently high. For very smallBn, the effect ofM is not
crucial, since the material is practically Newtonian, which
explains why the numerical stopping time falls again below
the theoretical upper bound, as it should. The effect ofM is
discussed in more detail in the case of the plane Poiseuille
flow.

F u-
e

ig. 5. Evolution of the velocity in cessation of plane Couette flow
ingham fluid withBn = 20 andM = 200.
ig. 7. Calculated times forQ = 10−3 and 10−5 in cessation of plane Co
tte flow of a Bingham fluid withM = 200.
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Fig. 8. Comparison of the computed stopping time (Q = 10−5) in cessation
of plane Couette flow of a Bingham fluid with the theoretical upper bound
(12); M = 200.

4.2. Cessation of plane Poiseuille flow

Figs. 9–12show the evolution ofux(y, t) for Bn = 0
(Newtonian case), 1, 5 and 20. InFig. 13, we see the evolution
of the calculated volumetric flow rate for various Bingham
numbers. As in plane Couette flow, the decay of the volumet-
ric flow rate is almost exponential for small Bingham numbers
and becomes polynomial at higherBn values.Fig. 14shows
plots of the times required for the volumetric flow rate to
become 10−3 and 10−5 versus the Bingham number for both
plane and axisymmetric Poiseuille flows (withM = 200).

Before proceeding to the comparisons with the theoret-
ical upper bound(23), let us investigate the effect of the
growth parameterM on the calculated stopping times. As

F of a
N

Fig. 10. Evolution of the velocity in cessation of plane Poiseuille flow of a
Bingham fluid withBn = 1 andM = 200.

demonstrated inFig. 15, which shows the results obtained
with M = 200 and 500, the calculated stopping times are
not so sensitive toM when the Bingham number is moder-
ate or high, i.e.Bn ≥ 1. For smaller Bingham numbers, i.e.
10−3 ≤ Bn ≤ 1, the time required for the volumetric flow
rate to become 10−5 is reduced asM is increased. For very
small Bingham numbers, the fluid is essentially Newtonian,
and therefore the value ofM has no effect on the calcula-
tions. Hence, in order to get convergent results in the range
10−3 ≤ Bn ≤ 1, the value ofM has to be increased further.
However, our studies showed that whenM = 1000, conver-
gence difficulties are observed whenBn > 0.01. Reducing
the time step might extend the calculations to a slightly higher
Bn, but beyond a criticalBn value the required time step
becomes very small and the accumulated round-off errors

F of a
B

ig. 9. Evolution of the velocity in cessation of plane Poiseuille flow
ewtonian fluid.
ig. 11. Evolution of the velocity in cessation of plane Poiseuille flow
ingham fluid withBn = 5 andM = 200.
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Fig. 12. Evolution of the velocity in cessation of plane Poiseuille flow of a
Bingham fluid withBn = 20 andM = 200.

are so high so that the error in the calculated stopping time
is higher than that corresponding to a smaller value ofM.
As a conclusion, decreasing the time step is not the best way
to obtain good results forM > 500. If results for small (but
not vanishingly small) Bingham numbers and largeM are
necessary, then continuation inM must be used at each time
step. According to our numerical experiments, using such a
continuation will increase the computational time by at least
10 times. Since we are not interested in such small values of
Bn, such calculations have not been pursued.

A comparison between theory and calculations is provided
in Fig. 16for the casef = 0 (i.e., when the imposed pres-
sure gradient is set to zero). Again, the computed stopping
time is just below the theoretical upper bound(23) for mod-

F lane
P m
n

Fig. 14. Calculated times forQ = 10−3 and 10−5 in cessation of plane and
axisymmetric Poiseuille flows of Bingham fluids withM = 200.

erate and high Bingham numbers. The small discrepancies
observed for small values of the Bingham number are due to
the fact thatM is not sufficiently high. We have also exam-
ined the case in which the imposed pressure gradientf is not
zero. An ideal Bingham plastic stops after a finite time if
f ≤ Bn and reaches a new steady-state iff > Bn (with the
volumetric flow rate corresponding to the new value off).
This is not the case with a regularized Bingham fluid. Since
M is finite, the flow will reach a new steady-state in which
the volumetric flow rate may be small but not zero. To illus-
trate this effect, we considered the case in whichBn = 1 and
M = 500 and carried out simulations for different values of
f. In Fig. 17a, we see the evolution of the volumetric flow rate
for different values off. Fig. 17b is a zoom of the previous
figure showing that indeed the volumetric flow rate reaches a

F i-
s .
ig. 13. Evolution of the volumetric flow rate during the cessation of p
oiseuille flow of a Bingham fluid withM = 200 and various Bingha
umbers.
ig. 15. Calculated times forQ = 10−3 and 10−5 in cessation of plane Po
euille flow of Bingham fluids withM = 200 (dashed) andM = 500 (solid)
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Fig. 16. Comparison of the computed stopping time (Q = 10−5) in cessation
of plane Poiseuille flow of a Bingham fluid with the theoretical upper bound
(23); f = 0 andM = 500.

Fig. 17. (a) Evolution of the volumetric flow rate for various values of the
imposed pressure gradientf; (b) detail of the same plot showing that a finite
volumetric flow rate is reached whenf > 0; plane Poiseuille flow withBn =
1 andM = 500.

Fig. 18. Volumetric flow rates reached with the regularized Papanastasiou
model vs. the imposed pressure gradientf; plane Poiseuille flow,Bn = 1 and
M = 500.

Fig. 19. Comparison of the times required to reachQ = 10−3 in cessation
of plane Poiseuille flow of a regularized Bingham fluid with the theoretical
upper bound(23) for an ideal Bingham fluid;Bn = 1 andM = 500.

Fig. 20. Evolution of the velocity in cessation of axisymmetric Poiseuille
flow of a Newtonian fluid.
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Fig. 21. Evolution of the velocity in cessation of axisymmetric Poiseuille
flow of a Bingham fluid withBn = 1 andM = 200.

finite value whenf �= 0. This value may be reduced further
by increasing the value ofM. The new volumetric flow rate is
plotted againstf in Fig. 18. Finally, inFig. 19we compare the
times required to reachQ = 10−3 with the theoretical upper
bound(23). For smaller values ofQ, the numerical results
move closer to the theoretical upper bound, but in a smaller
range off, which is easily deduced fromFig. 18. The devi-
ations between the theoretical predictions and the numerical
solutions become larger as the value of the imposed pressure
gradient is increased. These, however, can be further reduced
by increasing the value ofM.

4.3. Cessation of axisymmetric Poiseuille flow

The results for the axisymmetric Poiseuille flow are very
similar to those obtained for the planar case.Figs. 20–23

F uille
fl

Fig. 23. Evolution of the velocity in cessation of axisymmetric Poiseuille
flow of a Bingham fluid withBn = 20 andM = 200.

show the evolution ofuz for M = 200 andBn = 0 (New-
tonian case), 1, 5 and 20.Fig. 24 shows in detail how the
velocity profile changes near the wall whenBn = 20. A sec-
ond unyielded region of a smaller size appears near the wall,
in which the velocity is zero. The growth of this region can-
not be explained physically and is considered as a numerical
artifact due to the regularization of the constitutive equation.

In Fig. 25, we see the evolution of the calculated volumet-
ric flow rate (scaled by 2π),

Q(t) =
∫ 1

0
uz(r, t)r dr, (41)

for M = 200 and various Bingham numbers. As in plane
Poiseuille flow, the cessation of the flow is accelerated as the

F n of
a
2

ig. 22. Evolution of the velocity in cessation of axisymmetric Poise
ow of a Bingham fluid withBn = 5 andM = 200.
ig. 24. Detail near the wall of the evolution of the velocity in cessatio
xisymmetric Poiseuille flow of a Bingham fluid withBn = 20 andM =
00.
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Fig. 25. Evolution of the volumetric flow rate during the cessation of axisym-
metric Poiseuille flow of a Bingham fluid withM = 200 and various Bing-
ham numbers.

Fig. 26. Comparison of the computed stopping time (Q = 10−5) in cessation
of axisymmetric Poiseuille flow of a Bingham fluid with the theoretical upper
bound(39); f = 0 andM = 500.

Bingham number is increased. The calculated stopping times
forQ = 10−5 andf = 0, plotted versus the Bingham number
in Fig. 26, agree well with the theoretical upper bound(39),
with the small discrepancies observed for lowBn as expected.

5. Conclusions

The Papanastasiou modification of the Bingham model
has been employed in order to solve numerically the cessa-
tion of plane Couette, plane Poiseuille, and axisymmetric
Poiseuille flows of a Bingham plastic. The finite element
calculations showed that the volumetric flow rate decreases
exponentially for low, polynomially for moderate, and lin-

early for high Bingham numbers. Unlike their counterparts
in a Newtonian fluid, the corresponding times for complete
cessation are finite, in agreement with theory. The numeri-
cal stopping times are found to be in very good agreement
with the theoretical upper bounds provided in Refs.[2,3],
for moderate and higher Bingham numbers. Some minor dis-
crepancies observed for rather low Bingham numbers can
be reduced by increasing the regularization parameter intro-
duced by the Papanastasiou model.

A noteworthy difference between the predictions of the
ideal and the regularized Bingham model is revealed when
the imposed pressure gradient is nonzero and below the crit-
ical value at which a nonzero steady-state Poiseuille solution
exists. In contrast with the ideal Bingham flow which reaches
cessation in a finite time, the regularized flow reaches a steady
velocity profile corresponding to a small but nonzero volu-
metric flow rate. The value of the latter may be reduced by
increasing the value of the regularization parameterM but
will always be nonzero.
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