
Journal of Non-Newtonian Fluid Mechanics 285 (2020) 104393

Available online 19 September 2020
0377-0257/© 2020 Elsevier B.V. All rights reserved.

Flow of a Bingham fluid in a pipe of variable radius 

Lorenzo Fusi a, Kostas D. Housiadas b, Georgios C. Georgiou c,* 
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A B S T R A C T   

We extend a method developed by Fusi and Farina (Appl. Math. Comp. 320, 1–15, 2018) to obtain semi- 
analytical lubrication-approximation solutions for the flow of a Bingham-plastic in a tube of variable radius. 
The proposed method is applicable provided that the unyielded core extends continuously from the inlet to the 
outlet. It turns out that the variable radius of the latter core obeys a stiff integral-algebraic equation which is 
solved both numerically and asymptotically. The pressure distribution is then obtained integrating a 1st-order 
ODE and the velocity components are computed using analytical expressions. Converging or diverging either 
linearly or exponentially, undulating and stenosed tubes are considered. The effects of the shape of the wall on 
the yield surface which separates the yielded region from the unyielded core and on the pressure difference 
required to drive the flow are investigated and discussed. The results show that the effect of the wall variation 
amplitude is greatly amplified as the volumetric flow rate (or, equivalently, the imposed pressure difference 
driving the flow) increases. It is also demonstrated that the pressure difference needed to achieve a given 
volumetric flow rate in a converging pipe is always higher than that for a diverging one.   

1. Introduction 

Yield-stress or viscoplastic materials include various classes of ma
terials, such as colloidal gels, emulsions, soft glassy materials, and 
jammed noncolloidal suspensions, foams, and paints [1,2]. They have 
received considerable attention in the past few decades as they appear in 
many processes of industrial importance, such as food processing, 
pharmaceutics, cosmetics, and oil-drilling and transport [3], in con
struction, in geophysical flows and in biological flows [4]. Ideal 
yield-stress fluids behave as solids below the yield stress, τ∗0, and as fluids 
otherwise. The most popular constitutive equation describing visco
plastic behavior is the Bingham model [5]. In axial flow in a tube, this 
model is simplified as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

∂v∗z
∂r∗

= 0, τ∗ ≤ τ∗0

τ∗rz = sign
(∂v∗z

∂r∗

)

τ∗0 + μ∗
∂v∗z
∂r∗

, τ∗ > τ∗0

(1)  

where v∗z is the axial velocity component, τ∗rz is the shear stress, τ∗ =
⃒
⃒τ∗rz

⃒
⃒, 

and μ* is the plastic viscosity. Note that in this paper symbols with stars 

denote dimensional quantities. 
The Bingham model along with its Herschel-Bulkley variant (i.e. its 

power-law generalization) are ideal yield-stress models, i.e. the shear 
stress depends only on the imposed shear rate. Consequently, these 
models cannot describe thixotropic or elastic behavior [2]. Solving ideal 
viscoplastic flows requires the determination of the unyielded (τ∗ ≤ τ∗0) 
and yielded (τ∗ > τ∗0) zones where the two branches of the two-branch 
constitutive equation apply. This task is easy in simple unidirectional 
flows, such as in Poiseuille and Couette flows, where the unyielded re
gion is a cylindrical core moving axially at a constant speed in the former 
and rotating at a constant angular velocity in the latter case; the radius 
of the unyielded core is computed by solving a nonlinear algebraic 
equation. However, the determination of yielded regions becomes 
extremely difficult especially in two- and three-dimensional flows [2], e. 
g. in flows in channels or tubes of varying width or radius, respectively, 
or in standard Poiseuille flows when the rheological parameters are 
pressure dependent [6,7]. 

Fusi et al. [8] proposed a lubrication approximation method for 
solving Bingham-plastic flows in symmetric long channels of 
non-constant width. With their method the integral form of the mo
mentum balance over the unyielded core (the unknown width of which 
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also varies with the axial coordinate) is employed and the zero-order 
perturbation equations in terms of the aspect ratio of the channel, 
which serves as the small parameter of the perturbation, are solved. The 
pressure is calculated by solving a first-order ordinary differential 
equation (ODE) and then the yield surface and the two velocity com
ponents are calculated using explicit analytical expressions in terms of 
the pressure and the wall shape function. The fact that the yield surface 
is calculated explicitly is one advantage of the method. Moreover, the 
method yields the correct shape of the yield surface at zero-order, which 
means that the yield surface contracts if the wall expands and vice versa. 
This might be counter-intuitive but necessary for mass-conservation; 
given that the plug moves at a constant speed along the channel, it 
contracts when the channel expands and vice versa [9]. 

The standard lubrication approximation methods cannot yield this 
result at zero-order; they predict instead that the plug speed varies 
slowly in the main flow direction, a phenomenon known as the lubri
cation approximation paradox [9,10]. On the other hand, the method of 
Fusi et al. [8] is applicable only when the unyielded region extends 
continuously from the inlet to the outlet of the tube, i.e. above a critical 
pressure difference at which flow occurs and below the critical pressure 
difference at which the unyielded core breaks. More specifically, if the 
pressure difference between the inlet and the outlet planes of a 
converging channel is increased, then the yield surface moves towards 
the symmetry axis and eventually the expanding plug breaks at the inlet 
plane. If the pressure difference is decreased, then the volumetric flow 
rate is reduced and the yield surface moves towards and eventually 
reaches the wall; at this critical value the speed of the unyielded core 
vanishes due to the no-slip boundary condition and therefore there is no 
flow. Hence, the method is applicable only between these two critical 
values of the imposed pressure difference. Similar arguments also hold 
for an expanding channel; at a critical value of the pressure difference 
the contracting core breaks at the exit plane. It is also easy to deduce that 
the lubrication approximation method is only applicable for small or 
moderate changes of the channel width. For example, increasing the 
width difference between the inlet and outlet of a converging channel 
results in faster expansion of the unyielded core which eventually 
touches the wall so that there is no flow. 

Panaseti et al. [6] extended the method of Fusi et al. [8] to solve the 
flow of Herschel-Bulkley fluids with pressure-dependent consistency 
index and yield stress and derived analytical solutions for channels with 
linearly varying width. Subsequently, Panaseti et al. [11] considered the 
more general case of asymmetric horizontal channels, where the 
unyielded core moves not only horizontally but also vertically, 
depending on the two functions describing the shapes of the upper and 
lower walls. 

Fusi and Farina [12] extended the lubrication-approximation 
method for axisymmetric viscoplastic flows in long tubes of varying 
radius. Their method has been applied by Housiadas et al. [7] to solve 
the flow in a tube of constant radius of a Bingham plastic with yield 
stress and plastic viscosity varying linearly with pressure. Applying the 
perturbation method results in a system of a first-order ODE and an 
algebraic equation for the pressure distribution and the yield surface, 
which is not constant due to the pressure dependency of the rheological 
parameters. The latter system was solved both numerically using a 
pseudospectral method and by means of simple perturbation method, 
which allowed the derivation of some asymptotic results. 

The objective of the present work is to apply the method of Fusi and 
Farina [12] in order to study the flow of a Bingham plastic in tubes of 
varying radius, e.g. expanding or contracting tubes, or tubes with a 
stenosis. We focus only on the effect of the wall function on the solution 
and thus the rheological parameters of the Bingham plastic model are 

assumed to be constant (i.e. pressure independent). It should be pointed 
out that with the exception of a few studies with axisymmetric con
tractions and/or expansions relevant to polymer processing [13,14], 
most studies with uneven walls concern planar geometries ([2] and 
references therein). To our knowledge, the only 
lubrication-approximation studies of viscoplastic flow in axisymmetric 
geometries have been carried out with the method of Fusi and Farina 
[12], where the flow problem was formulated and solved only in the 
case of a small variation of the radius, or its extensions by Housiadas 
et al. [7], where the radius of the tube was taken to be constant. In the 
present work, the axisymmetric flow is solved numerically at the leading 
order of the lubrication approximation allowing bigger variations in the 
radius. It seems that the resulting simplified equations are more difficult 
to solve in cylindrical coordinates than in Cartesian ones. For example, 
there is a striking difference between the flows of a Bingham fluid with 
pressure-dependent rheological parameters in long channels and tubes 
of constant width and radius, respectively. In the planar case the width 
of the unyielded core is constant, whereas in the case of tubes the radius 
of the core may be increasing or decreasing depending on the relative 
values of the yield-stress and plastic-viscosity growth parameters [6,7]. 
Despite the scarcity of many published works, studying the flow of 
yield-stress fluids in tubes of variable radius is of interest in many ap
plications, such as blood flow in stenoses [15], flow through membranes 
with conical pores [16], and non-Darcy flow through porous media 
using pore network modelling with cylindrical throats and/or con
verging/diverging pore space [17]. 

The paper is organized as follows. The derivation of the model is 
described in Section II. Unlike the flow in a symmetric channel of var
iable width [6], the axisymmetric flow results in a stiff algebrai
c/integral equation for the yield radius. Then, all the field variables can 
be easily calculated via analytical expressions. We also derive an 
approximate analytical solution, i.e. a perturbation solution in terms of 
the maximum variation of the tube radius, and use it to validate the 
numerical method. The results are presented and discussed in Section III, 
where the effects of the yield stress on the pressure difference required to 
drive the flow and on shape of the yield surface are investigated. The 
effect of the shape of the wall is also studied by producing results for 
linearly or exponentially converging/diverging pipes as well as for un
dulating and stenosed pipes. Finally, concluding remarks are given in 
Section IV. 

2. Mathematical model and solution 

We consider the steady-state, axisymmetric flow of an incompress
ible Bingham plastic in a tube of variable radius h∗ = h∗(z∗) and length 
L*, employing cylindrical coordinates as illustrated in Fig. 1. Gravity and 
other external forces are neglected, and the flow is assumed to be driven 
solely by the pressure difference Δp∗ = p∗in − p∗out between the inlet and 
the outlet planes. It is further assumed that the unyielded core (where 
τ∗ ≤ τ∗0) extends from the inlet to the outlet plane and thus the function 
σ∗ = σ∗(z∗) describing the yield surface is continuous for 0 ≤ z* ≤ L*. 
With the above assumptions the velocity vector is of the form v∗ = v∗r (r∗,
z∗)er + v∗z(r∗, z∗)ez. 

The lubrication approximation method is described in detail in [7]. 
Basically, the equations of motion in the absence of external forces along 
with the non-trivial extra stress components apply in the yielded region 

D∗ ≡ {(r∗, z∗, θ)| r∗ ∈ [σ∗, h∗], z∗ ∈ [0, L∗], θ ∈ [0, 2π)}

The unyielded region 

Ω∗ ≡ {(r∗, z∗, θ)|r∗ ∈ [0, σ∗], z∗ ∈ [0, L∗], θ ∈ [0, 2π)}
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moves in the z-direction as a solid, i.e. at a constant axial velocity v∗c . 
We indicate here that the method proposed below is applicable when 

0 < σ*(z*) < h*(z*), i.e. between a lower critical pressure difference at 
which the yield surface touches the wall (σ∗(z∗c) = h∗(z∗c) at a point z∗c) 
and, consequently, the axial velocity of the unyielded core vanishes due 
to the no-slip boundary condition and un upper critical pressure dif
ference at which the unyielded core breaks (σ∗(z∗c) = 0). 

We non-dimensionalize the governing equations by scaling z* by L*, 
r* and σ* by R* ≡ h*(0), (p∗ − p∗out)and the pressure difference Δp∗ = p∗in 
− p∗out by τ∗0L∗/R∗, v∗z by τ∗0R∗/μ∗

0, v∗r by τ∗0R∗2/(L∗μ∗
0), and the extra-stress 

components by τ∗0 and dropping the stars for the dimensionless param
eters. For long tubes, the aspect ratio ε ≡ R*/L* is a small parameter, 0 <
ε < < 1 and if Δp = O(1) then a lubrication type approximation can be 
utilized to simplify the governing equations and accompanying auxiliary 
conditions. It turns out that at zero-order, the pressure p is independent 
of the radial coordinate, r, and the dimensionless constitutive equation 
reads: 
⎧
⎪⎪⎨

⎪⎪⎩

∂vz

∂r
= 0, τrz ≤ 1

τrz = − 1 +
∂vz

∂r
, τrz > 1

(2) 

Note that variables or symbols without a star denote dimensionless 
quantities. In the yielded region D, the shear stress is given by: 

τrz =
p′

2

(

r −
σ2

r

)

−
σ
r

(3)  

where hereafter the prime denotes derivative with respect to z. We also 
drop the explicit dependence of σ, hand p on z. The integral balance of 
linear momentum in Ω leads to the following equation: 
∫ 1

0
σ
(

1+
p′ σ
2

)
dz = 0 (4) 

Substituting Eq. (2) into Eq. (3), integrating with respect to r and 
applying the no-slip boundary condition at the wall, vz(h(z),z) = 0, we 
get the following expression for the axial velocity component: 

vz(r, z) =
p′

4

(
r2 − h2 − 2σ2ln

r
h

)
− h + r − σln

r
h

(5) 

The constant velocity of the unyielded core can be found as vc =

vz(σ(z), z): 

vc =
p′

4

(
σ2 − h2 − 2σ2ln

σ
h

)
− h + σ − σln

σ
h

(6) 

The radial velocity component is calculated by integrating the con
tinuity equation as follows: 

vr(r, z) =
1
r

∫ h(z)

r

∂
∂z

(ξvz(z, ξ)) dξ (7) 

Given that vc is constant, dvc/dz = 0, yields an expression for the 
second derivative of p. This expression is used to eliminate p′′ that ap
pears in Eq. (7). Then, integrating and rearranging give: 

vr(r, z) =
f1(z, r) + f2(z, r) h′

4r
[
h2 − σ2 + 2σ2ln(σ/h)

] (8)  

where 

f1(r, z) = (1+ p
′σ)σ′

[(
h2 − r2)2ln

σ
h
+
(
h2 − σ2)

(
h2 − r2 + 2r2ln

r
h

)]
(9)  

and 

f2(r, z) =
(

1 −
σ
h

)[

1+
p′h
2

(
1+

σ
h

)][
r4 − h4 − 4σ2( h2 − r2)ln

σ
h
− 4σ2r2ln

r
h

]

(10) 

Since the flow is incompressible, the constant volumetric flow rate is 
found as follows: 

Q = 2
∫ h(z)

0
vz(r, z)rdr = 2

∫ σ(z)

0
vc rdr + 2

∫ h(z)

σ(z)
vz(r, z)rdr

= σ2vc + 2
∫ h(z)

σ(z)
vz(r, z)rdr (11) 

Substituting Eq. (5) into Eq. (11) and carrying out the integration, we 
get: 

Q =

(h − σ)2
[

(h + σ)2vc +
1
3 (h + 2σ)

(
h2 − σ2

)
+ 1

3 σ
(
3h2 + 2hσ + σ2

)
ln σ

h

]

2
(

h2 − σ2 + 2σ2ln σ
h

)

(12) 

The system of the first-order ODE Eq. (6) and the algebraic Eq. (12) is 
accompanied with the following three auxiliary conditions: 

p(0) = Δp, p(1) = 0,
∫ 1

0
σ
(

1+
p′ σ
2

)
dz = 0 (13) 

Next, we introduce new variables r̃ ≡ r/h, σ̃ ≡ σ/h; thus 
0 < σ̃(z) ≤ r̃ ≤ 1. Then, Eq. (6) becomes: 

vc

h
=

p′h
4

(
σ̃2

− 1 − 2σ̃2lnσ̃
)
− 1 + σ̃ − σ̃lnσ̃ (14) 

Similarly, the volumetric flow rate is given by: 

Q =

(1 − σ̃)2h3
[

(1 + σ̃)2vc
h + 1

3 (1 + 2σ̃)(1 − σ̃2
) + σ̃

3 (3 + 2σ̃ + σ̃2
)lnσ̃

]

2(1 − σ̃2
+ 2σ̃2lnσ̃)

(15) 

In terms of the new variables, the auxiliary conditions in Eq. (13) 
reduce to: 

p(0) = Δp,

p(1) = 0,
∫ 1

0
σ̃h

(

1 +
p’σ̃h

2

)

dz = 0

(16) 

Although Eqs. (14)-(16) constitute a closed system of equations, we 
can proceed further by solving Eq. (14) for p′: 

p′

= −
4(h + vc − h σ̃ + h σ̃lnσ̃)

h2(1 − σ̃2
+ 2σ̃2lnσ̃)

(17) 

Substituting Eq. (17) in the last condition of Eq. (16), one gets: 

Fig. 1. Geometry and symbol definitions for viscoplastic flow in a tube of 
variable radius r∗ = h∗(z∗). 
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∫ 1

0
F(σ̃)

[
− 2vcσ̃ +(1 − σ̃)2h

]
dz = 0 (18)  

where 

F(σ̃) ≡ σ̃
1 − σ̃2

+ 2σ̃2lnσ̃
(19) 

We can thus solve Eq. (18) for the core velocity in terms of σ̃and h 
only: 

vc =

∫ 1
0 F(σ̃)(1 − σ̃)2h dz

2
∫ 1

0 σ̃F(σ̃)dz
(20) 

Notice that since 0 < σ̃ < 1, F(σ̃) is strictly positive and so are both 
the integrals in Eq. (20). Moreover, by integrating Eq. (17), one finds the 
pressure difference required to drive the flow: 

Δp = 4
∫ 1

0

vc + h(1 − σ̃ + σ̃lnσ̃)
h2(1 − σ̃2

+ 2σ̃2lnσ̃)
dz (21) 

Therefore, for given volumetric flow-rate, Q, and radius function, h 
= h(z), one can solve the algebraic/integral Eq. (15) along with Eq. (20) 
for the radius, ̃σ = σ̃(z), and the velocity, vc, of the unyielded core. Then, 
Eq. (21) can be used to evaluate the pressure drop, Δp, and the pressure 
distribution along the pipe by integrating Eq. (17). Finally, the velocity 
components can be evaluated by means of Eqs. (5) and (8), fully 
completing the solution of the zero-order problem. Note that a full 
Newton scheme is utilized to solve Eq. (15) numerically and all integrals 
are calculated using composite Simpson’s rule. 

2.1. Approximate solution 

Although the zero-order problem has actually been reduced to the 
algebraic/integral Eq. (15), from the solution of which one can find all 
the remaining field variables, it is useful to investigate approximate 
solutions. This can be done as follows. Let the radius of the axisymmetric 
pipe be of the form 

h(z) = 1 + Δh S(z) (22)  

where Δh ≡ max
0≤z≤1

h(z) − min
0≤z≤1

h(z) is the amplitude of the wall variation, 

and S = S(z) is a function which actually describes the deviation from 
the constant circular cross-section. For small Δh and for fixed Q, we 
assume a standard power-series expansion of the solution as X = X0 +

Δh X1 + (Δh)2 X2 + ..., where X ∈ {vc, σ̃, p}. This expansion is 
substituted into Eqs. (14)-(16) to obtain a sequence of problems at 
O(Δhj), j = 0, 1, 2,.... The equations are solved analytically up to second 
order, i.e. up toO(Δh2). The zero-order solution, which corresponds to 
Poiseuille-flow in a straight pipe, has been reported by Fusi and Farina 
[12] and Housiadas et al. [7]. This is given concisely in terms of σ̃0: 

Q = −
1
3
+

1
4σ̃0

+
σ̃0

3

12
,

vc,0 = − 1 +
1

2σ̃0
+

σ̃0

2
,

p0(z) =
2(1 − z)

σ̃0

(23) 

From the last expression in Eq. (23), the resulting pressure drop can 
be found as Δp0 = 2/σ̃0. Since 0 < σ̃0 < 1 it is obvious that Δp0 > 2. Note 
that σ̃0 is determined by solving the first expression in Eq. (23), which is 
a polynomial equation of degree 4. For Q > 0, it has one real admissible 
solution such that 0 < σ̃0 < 1. Notice also that the zero-order solution 
becomes singular as σ̃0→0+, i.e. when the yield surface approaches the 
axis of symmetry of the pipe. In this case, all quantities given in Eq. (23) 
go to infinity, a result which of course is non-physical. 

The first-order solution is: 

vc,1 = −

(

1 − σ̃0

)2(

1 + σ̃0

)

σ̃0

(

1 + σ̃2
0

)

∫ 1

0
S(y)dy (24)  

Fig. 2. Results for linearly converging/diverging pipes with Δh = ±0.07: (a) 
Δp (continuous lines) and vc (lines with dots) vs Q; (b) Yield surfaces for Q =
0.111(Δh = − 0.07) and Q = 0.182(Δh = 0.07); (c) Pressure distributions for Q 
= 0.111(Δh = − 0.07) and Q = 0.182(Δh = 0.07). The tube radius is given by h 
= 1+ Δh z. 
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σ̃1(z) = −

(

1 − σ̃0

)3(

1 + σ̃0

)2

σ̃0

(

1 + σ̃2
0

)[

1 − σ̃2
0 +

(

1 + σ̃2
0

)

lnσ̃0

]

∫ 1

0
S(y)dy+

(

1 − σ̃0

){(

1 − σ̃2
0

)(

1 + σ̃0 + σ̃2
0

)

+ σ̃2
0

[(

3 + σ̃0

(

2 + σ̃0

))

lnσ̃0

]}

σ̃0

(

1 + σ̃0

)[

1 − σ̃2
0 +

(

1 + σ̃2
0

)

lnσ̃0

] S(z)

(25)  

p1(z)= −
4

σ̃0

[

1 − σ̃2
0 +

(

1+ σ̃2
0

)

lnσ̃0

]

⎧
⎨

⎩

(

1 − σ̃2
0

)(

1 − σ̃0

)

(1 − z)

1+ σ̃2
0

∫ 1

0
S(y)dy 

+
1 − σ̃2

0 +2lnσ̃0

1+ σ̃0

∫ 1

z
S(y)dy

⎫
⎬

⎭
(26)  

where the condition p1(1) = 0 has been implemented. By evaluating Eq. 
(26) at z = 0, we find the O(Δh) correction to the pressure drop: 

Fig. 3. Results for exponentially converging/diverging pipes with Δh = ±0.05: 
(a) Δp(continuous lines) and vc (lines with dots) vs Q; (b) Yield surfaces for Q =
0.121(Δh = − 0.05) and Q = 0.93(Δh = 0.05); (c) Pressure distributions for Q 
= 0.121(Δh = − 0.05) and Q = 0.93(Δh = 0.05). The tube radius is given by h 
= 1+ Δh(1 − e− 4z). 

Fig. 4. Results for wavy pipes with Δh = ±0.035: (a) Δp(continuous line) and 
vc (line with dots) vs Q (the results are independent of the sign of Δh); (b) Yield 
surfaces for Q = 0.112; (c) Pressure distributions for Q = 0.112. The tube 
radius is given by h = 1+ Δhsin(4πz). 
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Δp1 = −
8

σ̃0

(

1 + σ̃2
0

)(

1 + σ̃0

)

∫1

0

S(y)dy (27) 

The O(Δh2) solution is too long to be given here. 
Eqs. (24)-(27) reveal some interesting features of the solution. For 

instance, the first correcting term for the yield surface is linear with 
respect to the shape of wall (not with respect to the axial coordinate). 
Also, the first-order pressure consists of two parts; the first is linear with 
respect to the axial coordinate, while the second part depends on the 
integral of the shape of the wall, S. Also, it is seen that the first-order 
terms for both the core velocity and the pressure drop depend on the 
integral 

∫ 1
0 S(y)dy. Consequently, a periodic wall-shape can induce only 

higher-order corrections since vc, 1 and Δp1 can be zero. Finally, it is 
worth mentioning that in addition to the singularity observed for the 
leading order term, a logarithmic singularity is exhibited by σ̃1 as 
σ̃0→0+. As discussed in the next Section, this singularity also affects p1. 

3. Results and discussion 

First, we point out that for a straight circular pipe, i.e. for h = 1, our 
numerical algorithm produces the correct solution, given by Eq. (23), for 

all the variables of interest, and even when the minimum number of 
points are used (three points). In cases, however, for which h ∕= 1, and for 
all the wall shapes that we studied, a convergent solution of Eq. (15) was 
possible only for small values of Δh. For this reason, we developed a 
variety of numerical methods to solve Eq. (15), such as a finite difference 
method, a pseudospectral method, and a finite element method. None of 
these algorithms was adequate to overcome the convergence problems 
and thus only small deviations from the constant circular pipe could be 
studied. In fact, the solution of Eq. (15) is lost at a critical volumetric 
flow rate, as discussed below. Beyond this critical value the problem is 

Fig. 5. Velocity contours for the undulating tube with Δh = 0.035 and Q =
0.112: (a) vz (19 uniformly-distributed contour values); (b) vr (19 uniformly- 
distributed contour values). The shaded area is the unyielded region. The 
tube radius is given by h = 1+ Δhsin(4πz). 

Fig. 6. Results for a stenosed tube with Δh = 0.035 and Le = 1/4: (a) Δp 
(continuous line) and vc (line with dots) vs Q; (b) Yield surfaces for Q = 0.01 
and 0.321; (c) Pressure distributions for Q = 0.01 and 0.321. The tube radius is 
given by Eq. (28). 
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quite stiff in the sense that convergence is achieved only if very small 
increments of the volumetric flow rate are used. This is of course a 
limitation of the model (i.e. the zero-order lubrication approximation 
equations) in cylindrical coordinates. 

We consider the flow in linearly diverging and converging tubes, i.e. 
tubes whose radius is of the form h = 1 + Δh z (in this case, S(z) = z). 
Fig. 2 shows results obtained with Δh =±0.07, i.e. for a diverging and a 
converging pipe. In Fig. 2a, the pressure difference, Δp, and the 
unyielded core velocity, vc, are plotted versus the volumetric flow rate, 
Q. As mentioned in Section I, the method is applicable between the 
resulting critical values of Δp corresponding to flow-cessation (Δp = 2)
and to plug break-up. We were able to produce convergent numerical 
results for conditions close to flow-cessation, but not close to plug break- 
up. Indeed, the solution of Eq. (15) is lost as the volumetric flow rate 
increases up to a critical point. For instance, the largest values of Q for 
which a solution was found were 0.182 and 0.111 for the converging 
and diverging pipes, respectively. The yield surfaces and the pressure 
distributions for these cases are shown in Fig. 2b and 2c, respectively. It 
can be observed that in the expanding tube the unyielded core is con
tracting and vice versa (Fig. 2b). This result, which is dictated by the 
continuity of mass, is not achieved at zero order with other lubrication 
methods, which thus exhibit the lubrication approximation paradox. In 
the expanding tube, the yield surface moves towards the axis of 

symmetry as Q is increased and eventually the unyielded core breaks at 
the exit plane. If Q is reduced instead, then the unyielded core moves 
towards and eventually touches the wall at the inlet, in which case the 
flow ceases due to the no-slip boundary condition. It should also be 
pointed out that while the variation of the wall is linear the variation of 
the yield surface is not and this is a striking difference from the results 
obtained for the planar channel [6] for which σ = − h(z) + C where C is a 
constant. Last, the results show that as the yield surface moves closer to 
the axis of symmetry, its gradient becomes steeper at the exit (entrance) 
of the diverging (converging) pipe and eventually the solution of Eq. 
(15) is lost. 

Other shapes of the wall of the pipe have also been studied. Figs. 3 
and 4 show results obtained for tubes with exponentially varying radii 
following h = 1 + Δh (1 − e− 4z) with Δh = ±0.05 and for undulating 
tubes with radii given by h = 1 + Δh sin(4πz) with Δh = ±0.035, 
respectively. Note that due to the periodicity of the undulating tube, the 
sign of Δh does not affect the pressure difference,Δp, and the core ve
locity, vc (Fig. 4a). The yield surfaces also follow a periodic pattern in 
phase with the radius function. However, the amplitude of the yield 
surface variation is greatly intensified as the axis of symmetry is 
approached and spikes are developed at the points where the yield 
surface attains minimum values. At the latter points, the derivative of σ 
eventually becomes discontinuous and the solution of the equation is 

Fig. 7. Velocity contours for a pipe with a stenosis with Δh = 0.035 and Q =
0.321: (a) vz (19 uniformly-distributed contour values); (b) vr (9 positive and 9 
negative uniformly-distributed contour values). The shaded area is the unyiel
ded region. The tube radius is given by Eq. (28). 

Fig. 8. Velocity contours for a pipe with a stenosis with Δh = 0.035 and Q =
0.01: (a) vz (19 uniformly-distributed contour values); (b) vr (9 positive and 9 
negative uniformly-distributed contour values). The shaded area is the unyiel
ded region. The tube radius is given by Eq. (28). 
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lost. The appearance of sharp corners in the unyielded regions in vis
coplastic flows is the rule rather than the exception; see for example the 
patterns in Refs. [18,19] for various flows. In their numerical study of 
non-Darcy effects in fracture flows of Bingham plastics, Roustaei et al. 
[20] presented results in wavy channels with broken plugs. However, it 
can be deduced from their computed examples that if the pressure drop 

is reduced the plugs would eventually meet forming sharp corners 
similar to those predicted by the present lubrication solution. Regarding 
the pressure distribution, this is almost linear in the exponential case 
(Fig. 3c), especially at low volumetric flow rates, while in the case of 
undulating tubes a ‘wavy’ variation is observed (Fig. 4c). The velocity 
contours for the case of an undulating tube with Δh = 0.035 are given in 
Fig. 5. 

We have also considered the flow in a tube with stenosis, which is of 
interest in hemodynamics. We used the geometry employed by Dima
kopoulos et al. [15]. The radius of the stenosed tube is also of the form of 
Eq. (22): 

S(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 ≤ z ≤ Le

− 1 + cos
(

2π z − Le

1 − 2Le

)

, Le < z ≤ 1 − Le

0, 1 − Le < z ≤ 1

(28)  

where Le is a parameter which can vary between 0 and ½ and S is an even 
function. In Fig. 6, we show the results for Δh = 0.035 and Le = 1/4. 
The resulting pressure difference and the core velocity are plotted versus 
the imposed volumetric flow rate in Fig. 6a, while the yield radius and 
pressure distributions are shown in Fig. 6b and 6c, respectively. Figs. 7 
and 8 show the velocity contours obtained with Q = 0.321 and 0.01, 
respectively. We observe again that the variation of the radius of the 
unyielded core is enhanced as the volumetric flow rate is increased. 

We have also compared the numerical solution with the approximate 
solution derived in the previous section. In Fig. 9, we plot vc versus the 
imposed Q for a linearly diverging pipe with Δh=0.07, an exponentially 
diverging pipe with Δh=0.05, an undulating pipe with Δh=0.035, and a 
pipe with stenosis with Δh=0.035. The numerical results are shown with 
solid lines, while the corresponding perturbation solution vc ≈ vc,0 +

Δh vc,1 with dotted lines. It is seen that the agreement is very good, for 
the whole range at which a numerical solution of Eq. (15) can be found. 
The same holds for the remaining variables (pressure difference, shape 
of the yield surface, and pressure distribution). Therefore, the expres
sions given by Eqs. (23)-(27) can safely be used as an approximate so
lution of Eqs. (13)-(15). Note that the improvement in accuracy when 
the 2nd-order correction term, O(Δh2), is accounted for is rather 
marginal. 

Due to the very good agreement between the approximate and nu
merical results, we exploited further the analytical solution in order to 
investigate the amplification of the variation of the yield surface as the 
latter approaches the axis of symmetry. Indeed, the normalized ampli
tude variation (with Δh) is simply given by the coefficient of S = S(z) in 
Eq. (25). First we note that the limit of this coefficient as σ̃0 goes to one 
(σ̃0→1− ) is minus three, while as σ̃0 goes to zero (σ̃0→0+) the limit is 

Fig. 9. Comparison of numerical (solid lines) and approximate (dotted lines) 
core velocities: (a) Linearly expanding (Δh = 0.07) and undulating (Δh =
0.035) tubes; (b) exponentially expanding tube (Δh = 0.05); (c) stenosed tube 
with Δh = 0.035 and Le = 1/4. 

Fig. 10. The normalized amplitude of the variation of the yield surface, i.e. the 
coefficient of S(z) in Eq. (25). The limit of this coefficient as σ̃0 ≡ σ0/h tends to 
unity is − 3 (horizontal line). 
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Fig. 11. Regions (shaded) of existence of solutions for Eq. (15) on the σ̃in − σ̃max plane, where σ̃in = σ̃(0) and σ̃maxis the maximum radius of the unyielded core (which 
corresponds to the minimum of the tube radius). The solution is lost at Δh ~ 0.29: (a) Δh = 0.035; (b) Δh = 0.05; (c) Δh = 0.07; (d) Δh = 0.1; (e) Δh = 0.2; (f) Δh 
~ 0.28. 
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minus infinity. Thus, the approximate solution will inevitably fail under 
flow conditions where the yield surface approaches the axis of symme
try, since in this case the first-correction term σ̃1 dominates on the 
leading-order term (i.e., on ̃σ0). Indeed, this can be seen in Fig. 10, where 
the normalized amplitude of the yield surface variation is plotted versus 
σ̃0 ≡ 2/Δp0. It is quite interesting that in the region 0.4 < σ̃0 < 1 the 
amplitude decreases smoothly and very little from its asymptotic value 
− 3, while a fast decrease is observed for σ̃0 < 0.4; note that at the value 
0.4 the numerical code also fails to converge. Therefore, it can be 
deduced that the logarithmic singularity predicted by the approximate 
solution (see Eqs. (25) and (26)) is not due to the method of solution but 
an actual feature of the mathematical model used here, i.e. of the 
lubrication approximation for a very long pipe with variable radius. 

Finally, we investigate the existence of solutions of Eq. (15) for 
converging tubes, graphically, as follows. First, we denote the reduced 
radii of the unyielded core at the entrance of the tube (where h = 1) by 
σ̃in ≡ σ/h|h=1. Then, Eq. (15) gives: 

Q=

(
1 − σ̃in

)2
[(

1+ σ̃in

)2
vc +

1
3

(
1+2σ̃in

)(
1 − σ̃2

in

)
+ σ̃in

3

(
3+2σ̃in + σ̃2

in

)
lnσ̃in

]

2
(

1 − σ̃2
in +2σ̃2

inlnσ̃in

)

(29) 

Recalling that the maximum value of the yield surface is achieved 
when the radius of the tube is at minimum, i.e. h = 1 − Δh, and denoting 
the corresponding reduced radii of the unyielded core as 
σ̃max ≡σ/h|h=1− Δh, Eq. (15) yields:   

Since Q is constant, Eqs. (29) and (30) can be used to find the con
stant core velocity vc in terms of ̃σin,σ̃max and Δh, i.e. vc = vc(σ̃in,σ̃max,Δh). 
Obviously, a solution of Eq. (15) exists as long as ̃σmax > σ̃in and vc > 0. In 
Fig. 11, the shaded areas represent the regions where both conditions 
are met on the σ̃in − σ̃max plane (0 ≤ σ̃max, σ̃in ≤ 1) for Δh = 0.035,0.05,
0.07,0.1, 0.2 and 0.28. One can observe that as Δh increases this region 
shrinks and eventually, at Δh ≈ 0.29, disappears, which mean that the 
solution of Eq. (15) is lost. Therefore, we conclude that a solution of Eq. 
(15) exists only up to a certain value of Δh. The same analysis can be 
performed also for diverging pipes too and leads to similar results. 

4. Conclusions 

A lubrication solution for the flow of a Bingham fluid in a tube of 
variable radius has been obtained under the assumption that the 
unyielded core extends continuously from the inlet to the outlet of the 
tube. The problem is reduced to solving a stiff algebraic/integral equa
tion for the radius of the unyielded core. The pressure distribution and 
the velocity components are then calculated using explicit analytical 
expressions. With the proposed method, the lubrication approximation 

paradox is avoided at the leading order of approximation, i.e. the pre
dicted radius of the unyielded core diverges in a converging channel and 
vice versa. Results have been obtained for different geometries, i.e. for 
linearly or exponentially diverging or converging tubes and for undu
lating and stenosed tubes. In contrast to the planar geometry, where the 
shape of the unyielded core depends solely on the width of the channel, 
in the axisymmetric flow the shape of the unyielded core also depends 
on the imposed pressure difference. The higher the pressure difference 
the more pronounced the effect of the tube radius on the unyielded core, 
which explains the stiffness of the problem as the yield surface ap
proaches the symmetry axis. Our calculations showed that the pressure 
difference for the converging pipe is always larger that for the diverging 
pipe. 

An approximate analytical solution has also been derived as a check 
to the lubrication solution. Both solutions reveal that the effect of the 
amplitude of the wall variation is greatly amplified as the volumetric 
flow-rate increases, i.e. as the yield surface moves closer to the sym
metry axis. A logarithmic singularity of the solution is also revealed 
analytically. The latter causes the loss of uniform convergence of the 
perturbation solution as well as to the divergence of the numerical code 
as the yield surface approaches the symmetry axis of the pipe. 
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