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A B S T R A C T   

The entrance length needed for pipe and channel flows to re-adjust from a uniform to a fully-developed velocity 
profile is typically defined as the length required for the centreline velocity to reach 99% of its fully-developed 
value. This definition may be quite inaccurate in non-Newtonian flows with almost flat fully-developed velocity 
distributions near the centreline. Shear-thinning and viscoplasticity may cause the flow close to the centreline to 
evolve faster than that closer to the walls. Thus, alternative definitions of the entrance length have been pro
posed, e.g., for viscoplastic flows. 

In the present work, we numerically solve the flow development of power-law fluids in pipes and channels and 
calculate the entrance length as a function of the transverse coordinate, determining the global entrance length, 
Lg , along with the standard centreline estimate, Lc. We also consider an alternative definition, Lt , based on the 
evolution of the wall shear stress. Results have been obtained for values of the power-law exponent n ranging 
from 0.2 to 1.5 and for Reynolds numbers (Re) up to 1000. In pipes, centreline and global entrance lengths 
coincide for n>0.7, i.e., the flow indeed develops more slowly at the symmetry axis. This is not the case, 
however, with fluids that are more shear-thinning. Big differences are observed, which are more pronounced at 
lower Re. The stress entrance length is smaller than the classical centreline entrance length except for n<0.4 and 
n>1.45. More dramatic are the differences in channel flow. For n<1 (shear thinning fluids), Lc is smaller than 
both Lt and Lg . The differences are relatively reduced as Re and n are increased.   

1. Introduction 

Fluid particles steadily entering a long conduit, such as a circular 
pipe or a straight channel, at a uniform velocity eventually readjust to 
the fully-developed Poiseuille distribution far downstream at a distance 
known as the entrance or development length. Estimates of the latter 
length are very important in many applications, e.g., in the design of 
pipe networks, in transition-to-turbulence studies [1], in rheometry [2], 
in microfluidics [3], and in hemodynamics [4]. If the entrance length is 
small compared to the total length of a pipe (or a channel), then the 
assumption of Poiseuille flow can be employed in order to obtain reli
able estimates of useful quantities in flows of industrial interest or in 
biofluid mechanics, such as the wall shear stress and the maximum ve
locity [4,5]. 

The development of the flow of a Newtonian fluid in a cylindrical 
tube or a channel has been extensively studied experimentally and 
computationally [6]. Approximate analytical solutions have also been 

derived [7]. The development or entrance length, L∗
c , is typically defined 

as the distance required for the maximum velocity at the axis or plane of 
symmetry to reach 99% of its fully-developed value, predicted by the 
corresponding Poiseuille’s formula. This is usually scaled by the pipe 
diameter or the channel width [6]. Thus, the dimensionless develop
ment length for a tube of radius R∗ is given by Lc = L∗

c/(2R∗); similarly, 
Lc = L∗

c/(2H∗) for a channel of semi-width H∗. It should be noted that 
throughout the paper, stars denote dimensional variables or parameters 
and are dropped for their corresponding dimensionless counterparts. 

Most studies of Newtonian flow development arrived at correlations 
between the dimensionless development length Lc and the Reynolds 
number Re [1,6]. Kountouriotis et al. [8] studied the Newtonian 
development length problem in the presence of wall slip following 
Navier’s slip equation, and introduced an alternative definition of the 
development length based on the slip velocity. Hence, the wall devel
opment length, Lw, has been defined as the length required for the slip 
velocity to decrease to 1.01% of its fully-developed value. Their 
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numerical simulations in both channels and pipes showed that both Lc 
and Lw increase with wall slip passing through a maximum and vanish at 
a critical value of the slip parameter corresponding to the full-slip case 
[8]. An interesting finding was that the flow development is slower at 
the centreline only in the case of a pipe. In channels, the flow devel
opment is slower at the wall, which implies that Lw > Lc. Given that the 
slip velocity is generally an increasing function of the wall shear stress 
[9], this result motivates an alternative definition of the development 
length based on the wall shear stress, as discussed below. 

In a later computational study of Newtonian entrance flow, Joshi and 
Vinoth [10] tried also an alternative (“streamtube”) configuration where 
the uniform velocity inlet boundary condition is moved a distance up
stream of the actual pipe or channel entrance, arguing that this is more 
realistic than setting the flat profile right at the pipe / channel entrance. 
They found that this reduces the development length at low Reynolds 
numbers compared to the classic configuration, while the effect is more 
limited at higher Reynolds numbers. They also calculated the “global” 
entrance length of Philippou et al. [11] (see below), and their results 
showed that the velocity development at some transverse location is 
slower than the centreline one in channels, whereas in pipes the flow 
development is slowest at the symmetry axis, in agreement with the 
findings of Kountouriotis et al. [8]. Finally, they defined also some 
entrance lengths based on integral quantities that are dependant on the 
velocity profile across the whole pipe or channel cross-section. 

Most fluids of industrial, geophysical, and biological interest are non- 
Newtonian. Non-Newtonian behaviour includes shear thinning or shear 
thickening, viscoplasticity, viscoelasticity, and thixotropy. For example, 
blood exhibits each of the aforementioned rheological phenomena to 
some degree [12,13]. Its non-Newtonian character is predominant in 
small arteries and veins where the diameter is close to the size of red 
blood cells [14]. 

Studies of entrance flows of viscoplastic fluids, i.e., of fluids exhib
iting yield stress, have demonstrated that the standard definition of the 
development length (Lc) is not representative of the actual length 
needed for the flow to develop fully across the tube or the channel. The 
flow near the centre of the pipe develops rapidly, especially at higher 
values of the yield stress, because once the unyielded plug has formed 
there, any further flow development is impossible. As was first pointed 
out by Vradis et al. [15], higher plasticity causes the solidified core, 
which moves with a uniform velocity, to spread closer to the walls, and 
therefore its velocity is closer to the inlet velocity, not requiring much 
readjustment. At the same time though, the flow nearer to the walls, 
where the fluid is yielded, continues to develop farther downstream. 
Therefore, a definition of the development length based on the 
maximum velocity is not appropriate. Ookawara et al. [16] introduced 
an alternative definition based on the velocity near the radial edge of the 
solidified plug at 95% of the plug radius (L95). They also employed a 
modified definition of the Reynolds number in an effort to collapse the 
viscoplastic development-length-versus-Re curves onto the Newtonian 
one, for all values of the Bingham number. Later, Poole and Chhabra 
[17] obtained more detailed numerical results and showed that, while 
the viscoplastic development length curves can indeed collapse onto the 
Newtonian one at high Reynolds numbers under a suitable definition of 
Re, the same cannot happen at the low Re limit, where the Bingham 
number always differentiates between the curves. Georgiou and co
workers [11,18] examined the problem further, monitoring the devel
opment length as a function of the transverse coordinate, with and 
without wall slip. They found that neither Lc nor L95 are adequate def
initions (in fact, not even in the Newtonian channel flow if wall slip is 
present), but instead proposed a global development length, Lg, which is 
the maximum development length across the pipe or channel. In a recent 
work, Dimakopoulos et al. [19] used the Penalized Augmented 
Lagrangian (PAL) method to accurately calculate the unyielded regions 
in the flow development of a Bingham plastic in a channel. 

Studies of viscoelastic flow development are quite few; see [20,21] 
and references therein. An associated problem, which has been studied 

more in the viscoelastic community, is the contraction problem, where 
fluid flows from a wider pipe or channel into a narrower one, but the 
length required for re-establishment of fully developed flow is not often 
reported. Nevertheless, the results show that elasticity causes the flow to 
develop more slowly than the corresponding Newtonian one [21,22], or 
even compared to a generalised Newtonian one that exhibits the same 
degree of shear-thinning [23]. 

Shear-thinning or thickening is exhibited by a wide class of non- 
Newtonian fluids [24]. This is relatively easy to measure and to 
model, and, in some applications, it is the only non-Newtonian behav
iour that needs to be accounted for in order to get a sufficiently accurate 
picture of the flow, despite the fluid possibly exhibiting also other kinds 
of non-Newtonian behaviour to some degree. Shear thinning is consid
ered to be the predominant non-Newtonian characteristic of blood and 
other biofluids [4]. The decrease of viscosity with the shear rate is 
attributed to the destruction of rouleaux and the disaggregation of red 
blood cells which orient themselves in the direction of the flow [4]. 

Rheological models that account only for shear-thinning behaviour 
are the generalised Newtonian ones. The simplest non-Newtonian 
constitutive equation able to describe shear thinning is the power-law 
model, according to which the shear viscosity, η∗, is given by [24] 

η∗ = k∗γ̇∗n− 1 (1)  

where k∗ is the consistency index, n is the power-law exponent, and γ̇∗ is 
the magnitude of the rate-of-strain tensor γ̇∗, defined by γ̇∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γ̇∗ : γ̇∗/2

√
. 

For n = 1, the viscosity is constant and the Newtonian model is recov
ered. The fluid is shear-thinning (pseudoplastic) when n < 1 and shear- 
thickening when n > 1. 

The power-law model has been employed in most studies concerning 
entrance flows of shear-thinning fluids [1,16,25,26]. Fernandes et al. [2] 
employed Sisko’s model, which is more general and reduces to the 
power-law model when the infinite shear-rate-viscosity is zero. In all 
these studies, the standard definition of the development length has 
been employed, assuming that the maximum velocity is a sufficient in
dicator of the flow development. Furthermore, in some of these studies 
an effort was made to collapse the development length curves as a 
function of the Reynolds number. While earlier works assumed this 
effort to be entirely successful, Poole and Ridley [1] showed that at low 
Reynolds numbers the collapsing of the curves is not perfect, but the 
development length still depends on the power-law exponent, similarly 
to what was mentioned above for viscoplastic flows. In particular, they 
found that, in the creeping flow limit, shear thinning causes the devel
opment length to increase due to the weakening of the viscous forces, up 
to a shear-thinning exponent of about n = 0.4; below this value, further 
strengthening of the shear-thinning behaviour causes a rapid reduction 
of the development length, as the fully developed velocity profile be
comes more plug-like and similar to the inlet profile, as for the visco
plastic case. They also proposed a correlation between the development 
length, the Reynolds number, and the shear-thinning exponent n, that 
extends that of Durst et al. [6] for Newtonian pipe flow: 

Lc =
[(

0.246n2 − 0.675n + 1.03
)1.6

+ (0.0567ReMR)
1.6
]1/1.6

(2)  

where the power-law index is in the range 0.4 < n < 1.5 and ReMR is the 
Reynolds number, as defined by Metzner and Reed [27], 

ReMR =
ρ∗U∗2− n(2R∗)

n

k∗
8
( n

2 + 6n

)n
= 8

( n
1 + 3n

)n
Re (3)  

Here, ρ∗ is the constant density of the fluid, U∗ is the mean velocity in the 
pipe, R∗ is the pipe radius, and 

Re =
ρ∗U∗2− nR∗n

k∗
(4)  

is the standard definition of the Reynolds number. 
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More recently, Fernandes et al. [2] proposed the following correla
tion for channel flow development for 0 ≤ ReMR ≤ 100 and 1 
/3 ≤ n ≤ 1: 

Lc =
[
f 1.6(n) + (0.0444ReMR)

g(n)]1/1.6 (5)  

where Re = ρ∗U∗2− nH∗n/k∗, H∗ being the channel semi-width, 

f (n) = 0.981 −
0.355

1 + 2e− (4.273n− 0.553) − e− (15.706n− 4.002) (6)  

and 

g(n) = − 0.209n2 + 0.645n + 1.225 (7)  

The Metzner-Reed Reynolds number in the case of channel flow, satisfies 

ReMR = 6
( n

1 + 2n

)n
Re (8)  

As noted in [2], with formula (5) the observed non-monotonic behaviour 
of Lc at lower Reynolds numbers is captured very well. Lee et al. [3] 
investigated numerically the developing flow of power-law fluids in 
pipes having superhydrophobic transverse grooves and showed that the 
corresponding development lengths are bigger than their counterparts 
for smooth pipes. 

The behaviour of shear-thinning (n < 1) fluids is known to be in some 
respects similar to that of viscoplastic fluids. In both cases, the viscosity 
decreases with shear rate. In both pipe and channel flows, the stronger 
the shear-thinning is, the more flattened the fully developed velocity 
profile becoming similar to its viscoplastic counterpart. This indicates 
that monitoring the velocity field only at the centreline or midplane may 
be misleading, as in the viscoplastic case. Syrakos et al. [28] also argue 
that flows of shear-thinning power-law fluids cease in finite time, like 
their viscoplastic counterparts. 

The objectives of the present work are: (a) to investigate whether the 
standard definition of the development length (Lc) provides an accurate 
criterion for the full development of the flow of power-law fluids in both 
pipes and channels; (b) to introduce an alternative definition of the 
development length, Lt, based on the evolution of the wall shear stress, 
and check its advantages and limitations. Lt is defined as the length 
needed for the wall shear stress to fall so that it deviates less than 1% 
from its fully-developed value. In fact, for many applications the wall 
shear stress is more crucial than the flow velocity – for example, blood 
vessels are lined with endothelial cells, whose growth, remodelling and 
function can be modified by the flow stresses [4]. Biological flows in the 
body commonly occur in tubular geometries, e.g., the flow of blood in 
vessels, or the flow of air in the lung airway tree. In medical and 
healthcare practice, flows of biological fluids can also occur in channels, 
e.g., the flow of blood in microfluidic diagnostic devices [29]. 

In Section 2, the equations governing the flow development of 
power-law fluids in pipes and channels are provided along with brief 
descriptions of the boundary conditions and the finite-element method 
employed for their solution. The numerical results, obtained for power- 
law exponents ranging between 0.2 and 1.5 and Reynolds numbers up to 
1000 are presented and discussed in Section 3. Finally, the conclusions 
of this work are summarized in Section 4. 

2. Governing equations and numerical method 

Consider the isothermal flow of a power-law fluid entering a long 
cylindrical tube (or a channel) of radius R∗ (or semi-width H∗) and 
length L∗

mesh with a uniform velocity U∗. Assuming that the flow is 
steady, incompressible and laminar, the continuity and momentum 
equations can be written as follows: 

∇⋅u∗ = 0 (9)  

and 

ρ∗u∗⋅∇u∗ = − ∇p∗ + ∇⋅τ∗ (10)  

where p∗ is the pressure field, u∗ is the velocity vector, and τ∗ is the 
viscous stress tensor. The constitutive equation of a power-law fluid is 
given by [24]: 

τ∗ = η∗(γ̇∗)γ̇∗ = k∗γ̇∗n− 1 γ̇∗ (11)  

Substituting Eq. (11) into the momentum Eq. (10), one obtains a system 
of two partial differential equations for the velocity and pressure fields. 

For convenience, the above governing equations are non- 
dimensionalized. As a length scale X∗ we take the radius R∗ in the case 
of a tube or the semi-width H∗ in the case of a channel. The velocity 
vector is then scaled by the uniform velocity U∗ (which is also the mean 
velocity), the components of γ̇∗ by U∗/X∗, and the pressure and stress 
components by k∗U∗n/X∗n. With these scales, the dimensionless forms of 
Eqs. (9)–(11) become 

∇⋅u = 0 (12)  

Re u⋅∇u = − ∇p +∇⋅τ (13)  

and 

τ = γ̇n− 1 γ̇ (14) 

The flow geometry and the boundary conditions for the cylindrical 
tube are illustrated in Fig. 1, where cylindrical coordinates (z, r) are 
used. The flow is assumed to be axisymmetric, i.e., two-dimensional: u =

u(r,z)ez + v(r,z)er. At the inlet plane, the axial velocity is flat (u = 1) and 
the radial velocity is zero (v = 0). For a sufficiently long tube, the 
normal total stress component − p + τzz and the radial velocity also 
vanish at the outflow plane. The standard symmetry and no-slip/no- 
penetration conditions are applied at the axis of symmetry and the 
tube wall, respectively. The boundary conditions are quite similar in the 
case of a channel, where cartesian coordinates (x, y) are employed. 

Standard finite elements are employed in order to numerically solve 
the system of Eqs. (12) and (13) for the velocity and pressure fields, 
which are approximated using biquadratic and bilinear basis functions, 
respectively [8]. The non-linear system of the discretized equations was 
solved using Newton’s method with a convergence tolerance equal to 
10− 4. The power-law constitutive equation implies infinite (n < 1) or 
zero (n > 1) viscosity at zero rate of deformation. To avoid numerical 
difficulties, solutions were obtained by starting from the Newtonian 
solution and using continuation on n. 

3. Numerical results 

We have carried out numerical simulations of the flow development 
of power-law fluids in both pipes and channels for power-law exponents 
ranging from 0.2 to 1.5 and for Reynolds numbers from zero up to 1000. 
Note that with the ideal power-law constitutive model employed here, 
the viscosity is allowed to go to infinity. For the development flows 
considered in this work, the only place that this would theoretically 
occur is at the centreline/plane of symmetry once the flow has become 
fully developed. However, there are no Gauss points located exactly on 
this boundary, and furthermore the grid cells there are coarser compared 
to those near the wall, so that the viscosity is not calculated at any point 
where it would, even theoretically, be infinite. On the other hand, the 
high values of viscosity and the associated stiffness do create numerical 
difficulties at low values of the power-law exponent, and hence we were 
unable to attain solutions for n < 0.22 for Re = 0 and for n < 0.3 for 
Re > 0, despite the use of continuation. The convergence of the nu
merical results has been confirmed using meshes of different refinement 
and different lengths. All the results presented below have been obtained 
with a rather long mesh with Lmesh = 1120, which was found to be 
adequately long for the highest value of the Reynolds number consid
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ered here. The distribution of the development length across the pipe, 
L(r), has been calculated by determining the distance beyond which the 
velocity for a given value of r lied between 0.99–1.01 times its fully 
developed value. Thus, the standard centreline development length is 
simply Lc = L(0) and the global development length is Lg = max

0≤r≤1
L(0). 

We have also calculated the wall shear stress development length, Lt, 
which is defined in a similar manner. To facilitate comparisons with the 
literature, the development lengths are scaled by 2X∗, i.e., by the 

diameter of the tube or the width of a channel. However, all other length 
quantities are scaled by X∗. It should also be noted that the Reynolds 
number, defined by Eq. (4), is also expressed in terms of X∗. 

3.1. Pipe flow development 

The development of the axial velocity in the case of a pipe for Re = 0 
and different values of the power-law exponent, n = 1.5, 1, 0.5 and 0.22, 
is illustrated in Fig. 2, where velocity distributions at different distances 

Fig. 1. Geometry and dimensionless boundary conditions for the flow development in a cylindrical tube.  

Fig. 2. Velocity profiles at z = 0, 0.02, 0.052, 0.1, 0.2, 0.40, 0.81 and 20 in pipe flow development when Re = 0 for different values of the power-law exponent: (a) n 
= 1.5; (b) n = 1; (c) n = 0.5; (d) n = 0.22. It should be noted that the scales of the vertical axis are different. 
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from the inlet are plotted. The initial overshoots of the velocity distri
butions near the wall are characteristic of the flow; the fluid particles in 
a layer adjacent to the wall decelerate due to the no-slip boundary 
condition at the wall and, thus, particles in the neighbouring layers need 
to accelerate for the mass to be conserved. The velocity distributions 
eventually tend to the corresponding Poiseuille flow solution, which is 
given by [24]: 

u =
(2 + α)n + 1

n + 1
(
1 − r1/n+1) (15)  

where α is an auxiliary parameter taking the values 1 and 0 for a pipe 
and a channel, respectively; obviously, r should be replaced by y for 
channel flow in the x direction. The velocity profile becomes more 
flattened as the power-law exponent is reduced, and, hence, the fully- 
developed maximum velocity, 

uc∞ = u(0) =
(2 + α)n + 1

n + 1
(16)  

decreases from 3 (n→∞; shear-thickening limit) to unity (n→0; shear- 
thinning limit), attaining the value of 2 when the fluid is Newtonian 
(n = 1). It is clear, e.g., by comparing the velocity distributions at z =
0.81 and z = 20, that the distance required for the centreline velocity to 
re-adjust to its Poiseuille-flow value is reduced as the fluid becomes 
more shear thinning (fluid particles at the symmetry axis have to travel a 
shorter distance in order to accelerate up to the fully-developed 
maximum velocity). However, the development of the axial velocity 
near the wall becomes slower, as can be observed in Fig. 2d where n =
0.22, despite the fact that the velocity overshoots are less pronounced. 

The effect of the power-law exponent on the distribution of the 
development length L(r) in a pipe is illustrated in Fig. 3, where the re
sults for n = 1.5, 1 and 0.22 are shown. One observes that for the first 
two values of n, i.e., for shear-thickening and Newtonian fluids, the flow 
develops more slowly along the axis of symmetry and thus the global 
and centreline development lengths coincide, Lc = Lg. It is clear that L(r)
decreases initially to pass through a sharp minimum within the tube 
before starting increasing again towards the wall. This minimum obvi
ously corresponds to the radial distance where the fully-developed ve
locity is equal to the mean velocity. The development length is not zero, 
since fluid particles may decelerate initially and then accelerate (or vice 
versa) to attain again their initial velocity. Nevertheless, with shear- 
thinning fluids (n < 1) the flow within the pipe develops more slowly. 
Below a critical value of the exponent in the shear-thinning regime, 
however, L(r) exhibits a local maximum within the pipe and its global 
maximum at the wall, in which case Lc < Lg. 

Fig. 4 shows the development of the centreline velocity and the wall 
shear stress for the Newtonian flow (n = 1) at zero Reynolds number. 
The centreline velocity (Fig. 4a), which is unity at the inlet, increases 
exhibiting a small, hard to see, overshoot to reach asymptotically the 
value uc∞, as given by Eq. (16). On the other hand, the wall shear stress 
(Fig. 4b), becomes infinite at the inlet due to the sudden change of the 
velocity boundary condition from unity to zero. The rapid deceleration 
at the wall is associated with high wall shear stresses that gradually 
decrease to their Poiseuille value, while the acceleration at the core 
requires pressure gradients that are larger in magnitude than the even
tual Poiseuille value. After exhibiting a slight, almost not discernible, 
undershoot, the wall shear stress converges asymptotically to its fully 
developed value: 

τw∞ =

(

2 + α +
1
n

)n

(17)  

(τw∞ = 4 in the case of Newtonian flow in a pipe). 
The effect of the Reynolds number is illustrated in Fig. 5, where the 

three development lengths for n = 1.5, 1 and 0.5 are plotted versus the 
Reynolds number. Recall that unlike other studies in the literature (e.g., 

Fig. 3. Development length in pipe flow for Re = 0 as a function of the radius: 
(a) n = 1.5 (shear thickening); (b) n = 1 (Newtonian); (c) n = 0.22 
(shear thinning). 
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[6]), the Reynolds number is defined not in terms of the diameter, but in 
terms of the pipe radius. In a logarithmic plot, all three development 
lengths initially exhibit a plateau and then start increasing more rapidly 
with the Reynolds number. The centreline development length practi
cally coincides with the global development length only when n ≥ 1. In 
the shear thinning regime, Lc is lower than Lg, and the differences are 
more pronounced at lower Reynolds numbers. In Newtonian flow (n = 1,
Fig. 5b), centreline and global development lengths coincide while the 
stress development length is smaller, especially at low values of the 
Reynolds number. The difference of Lt from the other development 
lengths is reduced as Re is increased and the three curves eventually 
merge for Re > 20. The situation changes with shear thinning fluids. 
When n = 0.5, the difference between Lc and Lg is more pronounced at 

low values of the Reynolds number (Re < 10) and decreases as the latter 
number is increased. With the exception of the interesting jump 
exhibited at low Reynolds numbers when the power-law exponent is 
high (Fig. 5a), the stress development length is smaller than Lc and Lg. 
The differences are less visible when both the power-law exponent and 
the Reynolds number are increased. For n ≥ 1, the three development 
lengths essentially merge for Re > 20. For n < 1, no merging is observed 
at high Re; at low Re, Lt is closer to Lc. Of course, if the Metzner-Reed 
definition of the Reynolds number is used instead the three curves 
collapse at high Reynolds numbers. 

In the case when n = 1.5 (Fig. 5a), Lt appears to be higher than Lc and 
Lg for small Reynolds numbers exhibiting a sudden jump at Re ≈ 2.5, 
becoming smaller than the centreline development length and then 

Fig. 4. Newtonian (n = 1) flow development in a pipe when Re = 0: (a) Development of the centreline velocity; (b) Development of the wall shear stress.  
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starts to increase, converging to Lc, as the Reynolds number is increased. 
This peculiar behaviour is a consequence of the stress undershoot that 
occurs before the flow is fully developed and the definition of Lt. As 
illustrated in Fig. 6, the stress undershoot is relatively big at low Rey
nolds numbers and the observed stress minimum is less than 0.99τw∞. 
Therefore, the flow becomes formally fully developed downstream of 
the stress minimum. Above a certain critical value of the Reynolds 
number, the stress minimum eventually becomes greater than 0.99τw∞. 
In such a case, the flow is formally fully-developed upstream of the stress 
minimum, when the stress reaches the value of 1.01τw∞, and this ex
plains the sudden jump in the value of the stress development length. 
Similar explanations, based on velocity overshoots or undershoots, can 
be provided for the sudden jumps exhibited, in certain cases, by the 
global development length in the case of channel flow, which is dis
cussed below. 

In Fig. 7, the development lengths are plotted versus the power-law 
exponent for Re = 0, 10 and 100. We observe that Lg and Lc essentially 
coincide for n > 0.7, which implies that the flow readjustment is indeed 
slower at the centreline. Below this value, Lg is higher than Lc. This is 
somehow expected since the velocity profile becomes more flattened as 
the power-law exponent is reduced. The difference between these two 
lengths becomes more pronounced at lower values of n and Re, which 
implies that the flow is not fully developed at a distance equal to the 
standard development length. While Lg is a decreasing function of the 
power-law exponent, the behaviour of Lc is non-monotonic. The stan
dard development length Lc appears to initially increase with the power- 
law exponent, exhibiting a maximum after which it decreases merging 
eventually with Lg. The calculated values of Lc agree well with those of 
Poole and Ridley [1]. The stress development length appears to be 
smaller than the other two lengths at moderate and high Reynolds 
numbers and the differences become bigger as the power-law exponent 
is reduced. At low values of the Reynolds numbers, however, Lt becomes 
bigger than Lc in the regime where the latter is an increasing function of 
the power-law exponent (Fig. 7a). The sudden jump of the stress 
development length in Fig. 7a for n ≈ 1.45 is obviously due to the stress 
overshoot effect discussed above. 

The effect of the power-law exponent on the three development 
lengths is illustrated in Fig. 8, where results for n = 0.5, 1, and 1.5 are 
shown. As the power-law exponent is increased the corresponding 
curves are shifted upwards retaining in general their shape, the only 
exception being the left branch of the stress-development-length curve 
for n = 1.5 (before the sudden jump). The results of Fig. 8a show that the 
power-law exponent affects the value of the centreline development 
length not only at high but also at low Re, as was pointed out by Poole 
and Ridley (2007). 

As a test to the present calculations, the results for the centreline 
development length for n = 1.5, 1 and 0.5 are compared with the pre
dictions of the empirical formula (2) proposed in [1]. As illustrated in 
Fig. 9, Eq. (2) describes quite well the variation of the centreline 
development length with the Reynolds number and the power-law 
index. For n = 1.5, some minor discrepancies are observed for inter
mediate Re, whereas for n = 0.5 some differences are observed at low 
and high values of the Re. According to Poole and Ridley [1], the 
agreement of Eq. (2) to the data was better than 5% except at the highest 
Reynolds numbers, especially for n = 0.4 and 1.5. 

3.2. Channel flow development 

The numerical results for the flow development in a channel differ 
from their pipe-flow counterparts in that the centreline development 
length does not coincide with the global development length in creeping 
(Re = 0) Newtonian flow. Lc and Lg become practically the same only 
above a critical value of the power-law exponent in the shear-thickening 
regime (n > 1). This can be seen in Fig. 10, where the distributions of 
L(r) for Re = 0 and three different values of the power-law exponent 

Fig. 5. The three development lengths in flow development of power-law fluids 
in a pipe: (a) n = 1.5; (b) n = 1; (c) n = 0.5. 

C. Lambride et al.                                                                                                                                                                                                                               



Journal of Non-Newtonian Fluid Mechanics 317 (2023) 105056

8

Fig. 6. Distribution of the wall shear stress when n = 1.5: (a) Re = 0; (b) Re =
2.5; (c) Re = 10. When Re < 2.5 the point where the flow becomes fully 
developed is downstream of the stress minimum. When Re = 2.5 the minimum 
is not so sharp and the flow is assumed to become fully-developed upstream of 
the stress minimum, which explains the sudden fall of Lt . At even higher values 
of the Reynolds number, the wall shear stress distribution decreases mono
tonically. Axisymmetric flow. 

Fig. 7. Centreline, global, and stress development lengths for the flow devel
opment of power-law fluids in pipes: (a) Re = 0; (b) Re = 10; (c) Re = 100. 
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(n = 1.5, 1, and 0.4) are shown. The sudden jump of L(r) near the wall 
when n = 1.5 is obviously due to an undershoot of the velocity similar to 
that of the wall shear stress in Fig. 4. Ignoring this jump, we observe that 
Lc = Lg only in the shear-thickening regime. Another difference from 
Newtonian pipe flow (n = 1, Fig. 3b) is that the maximum of L(r) occurs 
in the interior of the channel (Fig. 10b). The behaviour of L(r) for lower 
values of n in the two geometries is quite similar. 

The effect of the Reynolds number for n = 1.5, 1, and 0.5 is illus
trated in Fig. 11. Clearly, Lc is smaller than Lt and Lg in all cases. For 
lower values of the power-law exponent the observed differences 
become more pronounced which implies that using the classical defi
nition of the development length is not reliable in the channel geometry. 
As already mentioned, the result that the flow develops more slowly at 
the wall has also been suggested by the numerical simulations of 
Kountouriotis et al. [8] for Newtonian flow in the presence of wall slip, 
where the wall development length was defined in terms of the slip 
velocity. Since the latter is an increasing function of the wall shear stress, 
the wall development length is equivalent to the stress development 
length considered here provided that finite wall slip occurs. For values of 
Reynolds number above Re = 10, Lt is bigger than Lg in the 
shear-thickening regime, roughly equal to Lg for values of the power-law 
exponent near unity (Newtonian fluid) and smaller than Lg in the shear 
thinning regime. When n = 1.5, sudden jumps are observed for Lt and 
Lg, due to undershoots of the wall shear stress and overshoots of the 
velocity. Lt and Lg are much bigger than Lc at low Re. For low Reynolds 
numbers, the three development lengths essentially coincide for 
power-law exponents around unity (Fig. 11b). As the fluid becomes 
more shear thinning, the differences between the three development 
lengths become more important for low Reynolds numbers. 

In Fig. 12, the variation of the development lengths with the power- 
law exponent is illustrated for Re = 0, 10 and 100. Note the non- 
monotonicity of Lc at zero Reynolds number, also observed in pipe 
flow. This curve agrees well with the results of Fernandes et al. [2]. 
Jumps of the stress and global development length are observed in the 
shear-thickening regime only when the Reynolds number is low 
(Fig. 12a). The stress development length lies between Lc and Lg for 
values of n in the shear-thinning regime. The centreline and global 
development lengths tend to merge as n is increased. This merging is 
delayed at higher Reynolds numbers. When Re = 10 (Fig. 12b), Lt be
comes smaller than the velocity-based development lengths for 
n > 1.35. When Re = 100, however, Lt, exceeds Lg for n > 1, i.e., in the 
shear-thickening regime. 

Fig. 8. Effect of the power-law exponent in pipe flow development on: (a) 
centreline development length, Lc; (b) Global development length, Lg ; (c) Stress 
development length, Lt . 

Fig. 9. Comparisons of the calculated centreline development lengths for n =

0.5, 1 and 1.5 with the predictions of the empirical formula (2) of Poole and 
Ridley (2007) for pipe flow development. 
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Fig. 10. Development length in channel flow for Re = 0 as a function of the 
distance from the midplane: (a) n = 1.5 (shear thickening); (b) n = 1 (Newto
nian); (c) n = 0.4 (shear thinning). 

Fig. 11. The three development lengths in flow development of power-law 
fluids in a channel: (a) n = 1.5; (b) n = 1; (c) n = 0.5. 
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Finally, comparisons have been made with the predictions of the 
empirical correlation (5), proposed by Fernandez et al. [2] for 0 ≤

ReMR ≤ 100 and 1/3 ≤ n ≤ 1, i.e., only for shear-thinning power-law 
fluids. As shown in Fig. 13, where the numerical results for n = 0.5, 1, 
and 1.5 and Re ≤ 1000 are plotted, there is a very good agreement with 
the empirical correlation even for the shear-thickening case. Bigger 
differences are observed for the shear thinning fluid (n = 0.5) when 
Re > 10. 

4. Conclusions 

In this numerical study, we have investigated the flow development 
of power-law fluids in pipes and channels. In addition to the standard 
definition of the development length, Lc, which is based on the centre
line velocity, we also considered the global development length, Lg, 
defined over the axial velocity distribution, and the stress development 
length, Lt, based on the development of the wall shear stress. Results 
have been obtained for 0.2 ≤ n ≤ 1.5 and 0 ≤ Re ≤ 1000. 

The results for pipe flow development showed that the standard 
development length Lc is a reliable indicator of flow development only 
for values of the power-law exponent greater than 0.7, independently of 
the Reynolds number. For more shear-thinning fluids (n < 0.7), how
ever, the centreline development length is misleading, since the flow 
develops more slowly far from the axis of symmetry. The relative dif
ferences are more striking at low Reynolds numbers at which Lg can be 
four times Lc. Hence, attention must be paid when using the assumption 
of fully developed flow for shear thinning fluids in pipes when the 
Reynolds number is low, e.g., for flows of blood or other biofluids in 
small vessels. The wall stress development length in a cylindrical tube is 
always shorter than the centreline development length, except at low 
values of the Reynolds number and the power-law exponent (n < 0.4). 

In contrast to its pipe-flow counterpart, the standard development 
length is not a reliable criterion for channel flow development. This 
coincides with the global development length only for low Reynolds 
numbers and for certain values of the power-law exponent in the shear 
thickening regime (n > 1). The difference between Lg and Lc increases 
with inertia and shear thinning. Another interesting finding is that the 
stress development length is also greater than the standard development 
length. As already mentioned, Lt is also greater than the global devel
opment length in the shear thickening regime, when the Reynolds 
number is high. Thus, the use of the stress development length makes 
more sense in channel flows, where flow development is slower near the 

Fig. 12. Centreline, global, and stress development lengths for the flow 
development of power-law fluids in channels: (a) Re = 0; (b) Re = 10; (c) Re =
100. 

Fig. 13. Comparisons of the calculated centreline development lengths for n =

0.5, 1 and 1.5 with the predictions of the empirical formula (5) of Fernandez 
et al. [2] for channel flow development. 
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wall. This was also deduced by Kountouriotis et al. [8], who studied the 
development of Newtonian flow in channels and pipes in the presence of 
wall slip and reported that, in contrast to pipe flow, in channels the 
slip-velocity development length is bigger than the standard develop
ment length. The slip development length is equivalent to the stress 
development length defined in the present work, which, however, is 
more general, since it also applies in the absence of wall slip. 
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