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Abstract: We study a Riemann problem for the unsteady transonic srislirdance equations that results in a
diverging rarefaction problem. The self-similar reduntieads to a boundary value problem with equations that
change type (hyperbolic-elliptic) and a sonic line that fse& boundary. We summarize the principal ideas and
present the main features of the problem. The flow in the ngdierpart can be described as a solution of a degen-
erate Goursat boundary problem, the interaction of thdaetien wave with the subsonic region is illustrated and
the subsonic flow is shown to satisfy a second order degeneligitic boundary problem with mixed boundary

conditions.
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1

We study a diverging rarefaction problem for a special
system of conservation laws, the unsteady transonic
small disturbance (UTSD) equations:

I ntroduction

(1)
(2)

with appropriate Riemann data. Hefe,y) € R?,
t > 0 andu andv denote the components of the phys-
ical velocity, which are functions df, =, y).

Systems of conservation laws in one spatial vari-
able have been studied extensively and the theory re-
garding the existence of solutions is well developed.
For systems in more than one spatial variable, very lit-
tle is known and there is a great interest to understand
the complicated behavior observed in phenomena rep-
resented in multi-dimensional conservation laws for
their mathematical, but also for their physical impor-
tance. It is well known that Riemann problems serve
as building blocks in solutions to general conserva-
tion laws with arbitrary data in one-space dimension.
Therefore, such problems could indicate what types
of singularities arise in multi-dimensional general sys-
tems. Exposition of the current state of the theory can
be found in the books [12, 23].

There is an intensive program by many members
of the community in conservation laws to investigate

Ut + Uy + Uy
—Vz + Uy

0,
0,

this area of research. As a first step, the focus is on
Riemann problems of simplified models with the in-
centive to move from the particular to the general. The
long-term goal is to understand Riemann solutions of
prototype problems, and then turn to a difficult task of
gluing together the various discontinuity types to de-
scribe solutions of general systems with arbitrary data.
This approach was also employed for the case of one
space dimension having shocks and rarefactions.

Several groups in conservation law€apic—
Keyfitz—Kim [1]-[3], G.-Q. Chen-Feldman [5]-[9],
S. Chen [10]-[11], Elling—T. P. Liu [14], Zheng et
al [25]-[28], etc.) have adapted the self-similar ap-
proach to study shock reflection and rarefaction prob-
lems for some simplified models of Euler equations in
recent years. In self-similar coordinates, the equations
reduce to mixed hyperbolic-elliptic type across the
sonic line. The formation of a shock as a free bound-
ary in shock reflection problems raises the need to in-
vestigate free boundary problems with mixed bound-
ary conditions and use compactness methods to con-
struct a convergent subsequence that induces a solu-
tion. In G.-Q. Chen and Feldman [9], global existence
and stability to regular shock reflection are established
for potential flow. Results about local solutions for
shock reflection for other models can be found in [1]-
[3], [17]-[20]. Rarefaction problems have been stud-
ied mostly by Zheng and his group [25]—-[28] and no



global existence result is known yet.

In this article, we study the UTSD equations (1)—
(2) and we choose special Riemann data so that the
waves are outward-traveling rarefactions. It should be
noted that the UTSD equations can be obtained by an
asymptotic reduction of the compressible gas dynam-
ics equations when having weak shocks and small de-
viation from one-dimensional flow [6, 7] and there-
fore, serve as a prototype model. For more details, we
refer to Morawetz [22] and Hunter-Tesdall [16].

We remark that this work is in progress and we
present the main ideas and features of this diverging
rarefaction problem that we obtained so far. The aim
is to give an emphasis on the new features that arise
when dealing with rarefactions, in contrast to shock
reflection phenomena and the different technigues that
need to be implemented to solve the free boundary
problem that arises. We first write the problem in
self-similar coordinates and then, establish the solu-
tion in part of the hyperbolic region, far from the ori-
gin (Section 2). Next, we show that the equations
are of mixed-type in the interaction region. In con-
trast to shock reflection problems, the free boundary
is the sonic line along which the problem is degener-
ate. The flow in the hyperbolic part can be described
as a solution of a degenerate Goursat boundary prob-
lem with characteristic data on a curve and matching
condition on the sonic boundary (Section 3.1). Fur-
thermore, we describe how the rarefaction interacts
with the subsonic region and we choose appropriate
mixed boundary conditions (Section 3.2). Finally, we
propose an iteration scheme to solve the free bound-
ary problem (Section 3.3). We mention that new tech-
nigues need to be developed to establish existence of a
solution of this rarefaction problem and, at this stage,
we present the results established so far. We expect
though that the main features observed here will be
useful in subsequent attempts to tackle more general
rarefaction problems.

It is expected that a weak shock will form at or
near the sonic line somewhere in the interaction re-
gion. This has been observed numerically by Tesdall
[24]. In this project, we focus only on the local so-
lution and we do not investigate the formation of this
shock.

2 TheUTSD Equations

If the Riemann problem for the UTSD equations (1)—
(2) has the following initial data:

(—1,—a), for 0<y< —z/a;
Uli=o =< (=1,a), for z/a<y<0;
(0,0), otherwise,

with a > 0, two rarefaction waves will be created near
the lines of initial discontinuitieg) = +7. As time
increases, the two rarefaction waves will spread out
and interact near the origin.

There is a self-similar structure for the expected
solution. Hence, we study the UTSD equations in
self-similar coordinate¢s, n) = (z/t, y/t):

(3)
(4)

We rewrite the above equations in the matrix form

()

(u—8ue —nuy +v, = 0,
—Vg¢ + Uy 0.

where

-1
0

U§ + A(U> 67 77) U77 = 07
n

1
E—u|u—¢
and we compute the eigenvaluesAf

onEVn?+46 —4du
- 206 —u)

It is clear that, when linearized about a constant state,
system (3)—(4) changes type across the sonic parabola
u = ¢ + n?/4, and is hyperbolic if and only ifi <

§+ 17 /4.

Because the problem is symmetric, we only need
to study the solution in the upper half plane with the
rarefaction wave from above. Since the rarefaction
wave is parallel to the ling = —§ far from the origin,
we assume the dependeniée= U (¢ + an) in order
to find the rarefaction wave away from the interaction.
Using the expressiol/ (£ + an) to solve equations
(3)-(4), we obtain that the rarefaction wave is given

by

AU, &) =

|

A2

)

(6)

2 and

(7)

for a> — 1 < & 4+ an < a® The right border of
the rarefaction wave i§ + an = «? along which
(uo,v0) = (0,0).

When the rarefaction wave stretches dowrtto
axis, an interaction with the rarefaction wave in the
lower half plane occurs, giving rise to a very compli-
cated structure. An elliptic region appears near the
origin due to this interaction. The right border of the
elliptic region is determined in the following way. On
the border, we assume that the system is elliptic de-
generate and the data matches the right state 0.
This gives a sonic parabola+ n?/4 = 0, which
intersects the right boundary of the rarefaction wave
€ + an = a? at the pointA(—a?,2a) (see Figure 1).

It turns out that the information at the poidttravels
into the hyperbolic region and curves the rarefaction

u=&+an—a vy = aug,
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Figure 1. Domain of the rarefaction wave interaction
in &-n plane

wave. This phenomenon is due to the fact that the flow
is transversal to the family of parabolas- % /4 = k
and travels inward.

It is convenient to consider the problem in
parabolic coordinategp,n), wherep = & + n?/4.
Then the flow is in the negative direction. If we
consider the nonphysical flow direction from the far
field above to the origin, we cannot obtain a continu-
ous transonic flow for this problem. This can be seen
from the following argument. We rewrite equations
(3)—(4) in(p,n)-coordinates

n
(u—p)up—iun—l—v,7 = 0

(8)

Ty —vp+u, = 0 9)
2up ’Up un = .
Assume that the flow travels along the negatjvei-
rection. Therefore, the rarefaction wave will keep
straight level curves until it hits the sonic line, which
turns out to be the horizontal line given liy, : n =
2a. Equations (8)—(9) can be reduced to a second or-
der equation for a potential functias
1
i@p = 07 (10)
whereyp, = v andy, = v — Zu. We denote the
corresponding potential above the sonic lingby

1
— "~ (4p — (n — 2a)2)2
and we remark that equation (10) is elliptic below the
line Ly. Itis easy to check that

(@p - p)‘Ppp + Oy +
¥o

Y= 5721+ eln — 20)

is a super-solution, when boundary condition by
isp = %p2. Hence, we have < ¢, which implies

©ulLe > 3€p® > 0. On the other handyo), |z, = 0,
which means that cannot be continuous acro&sg.
Hence, the physical flow should travel along negative
p direction instead of negativgdirection.

Now, we investigate the region affected by the
point A. To determine this region, we need to find
the characteristic lines starting from. Givenu =
€ + an — a® and using (6), we obtain the eigenvalues

1 1
)\1:—— and )\2:— .
a n—a

Therefore, at the poin#i, the characteristic of the-
family is just the right border of the rarefaction wave
and the characteristic of tiefamily is the arc of the
parabola

(n—a)*  d

@:f—k

2 2"

The straight rarefaction wave will be curved below

AC due to the effect of the information at poirt
and become hyperbolic degenerate when it reaches the

sonic Iine@, which is a free boundary.

Numerical simulations by Tesdall [24] indicate
the complicated structure of the problem and appear-
ance of a weak shock near or at the free boundary on
the left side. However, in this paper we consider the
problem only near the origin and for that reason we
impose a cutoff boundary (Iin€ D).

In view of the above analysis, we formulate the
problem as follows.

Problem: Find a Lipschitz continuous solutidp, v)
of system (3)—(4) such that

(u,’u)\@ = (UO7UO),
(’LL,’U)|5A = (070)7
vl55 =0,

un’O/B = O,

with some appropriate conditions along the cutoff
boundaryBD.

3 Strategy and Preliminary ldeas

In this section, we present our main ideas regarding
the proof of existence of solutions to the above free

boundary problem. The study can be divided into sev-
eral problems that need to be resolved and pieced to-
gether in order to establish the solution in the inter-

action region. First, we fix the sonic lindB and

we solve the fixed boundary problem. Solving the

fixed boundary problem consists of two steps as the



domain is divided in two parts: degenerate hyperbolic
and degenerate elliptic problems in domains described
by ABC and ABDQO, respectively. Then we employ
an iteration scheme to establish the sonic line as a free
boundary.

3.1 Degenerate Hyperbolic Problem

We consider the degenerate hyperbolic problem in the

domainABC. Recall thatAC is a Goursat boundary
with data given by

(u, )|

a0 = (w0, vo),
AB is a fixed sonic line, which is degenerate hyper-
bolic, with condition
2
E+ 1,

ul 1

AB ~

and BC is the cutoff boundary along which no con-
ditions should be imposed. The problem is genuinely
difficult because of the degeneracy on the sonic line,
and, in particular, controlling the hyperbolicity, i.e.,

the sign of¢ + 1743 — u, becomes complicated.
We rewrite equations (8)—(9) as

U,+B(U,p,n) U, =0,
where the matrixB is given by

—n/2 1
—n*/d+p—u n/2 |’

Then, we find the eigenvalues Bf

1

B(U,pm) = —

p

and X; = ! s

p fe—
the right eigenvectors
1

1
== ) [y )
and the left eigenvectors
—4+vp—u 1, b=[-4-vp—u
It should be noted that the system is hyperbolic if and

only if w < p. Moreover, we compute the Riemann
invariants

A=

1
Vp—u

I

n
= 1].
2 ]

7 2
Rl(va777) = —5’& - g(p - ’LL)3/2 +v )

n 2
R2(U7 P 77) = —5’& + g(p - ’LL)3/2 + v,

O

Figure 2. The two families of characteristic curves
C1, Cy in the hyperbolic domaisd BC' in p-n plane.

and show that they satisfy the evolution equations

p—3u
(R1)p + M (Ri)y + N =0,
3
—su
(R)p + 2al(Ra)y — o2 =

Also, we establish the relations

DUerl = 11’1"1 = 2\/[) — U

and

DURQT'Q = 127"2 = —2\/p —u,
indicating certain monotonicity of Riemann invariants
along the two families of characteristics (see Figure
2). Using this information, we were expecting to find
Ry and R inside the domain starting from the ini-
tial condition along the boundar@ and using the
boundary conditionR; = R» along@ (see Figure
1). However, sincé; is increasing along the 1-family
of characteristicsRs is decreasing along the 2-family
of characteristics anf®; = Ry along@, more anal-
ysis is required to control the sign @t; — Ry and
therefore, ofp — w.

Hence, we follow a different approach to control
the sign ofp — u. We actually use arguments similar
to those in [28] by Y. Zheng and [13] by Z. Dai and
T. Zhang. More precisely, we denote by

DY =+p—ud,+ 0y, D =—\/p—ud,+ 0.
By virtue of equations (8)—(9), we derive
1

1
DUDM) = ———u, Dt (12)

Vh—u



Given an interior poini, the 2-characteristiac’s will

intersect the Goursat bounda@ at P, and equation
(12) yields

D u(P) = D" u(Py)eles 777,

But we haveD"u = —2,/—p < 0 on the Gour-
sat boundary, implying@®*«(P) < 0. Similarly, by
equation (11), we get thd?"! u(P) has the same sign
along 1-family of characteristias; until we reach the
point P, on the sonic lineAB. Since DY u(Py) =
D" u(Py) on the sonic line, tracing along another 2-
family of characteristics, we géd! u(P) < 0. It fol-
lows immediately that

uy(P) = %(Diu(P) + D u(P)) <0,

which implies the result.(P) < p.

3.2 Degenerate Elliptic Problem

After constructing a solution of the degenerate hy-
perbolic problem, we consider the degenerate ellip-
tic problem in the domaidBDO. As it is usual in
the study of two-dimensional systems of conservation
laws, we derive a second order equation for one of
the variables and impose mixed boundary conditions
along the boundary. The theory of second order el-
liptic equations with mixed boundary conditions by
Gilbarg, Trudinger and Lieberman is used to establish
existence of a solution (see [15]).

More precisely, by differentiating equation (3)
with respect t& and (4) with respect tg, we obtain
a second order equation far

((w = &ug)e — nuey + Uy = 0. (13)
It is easy to check that (13) is elliptic if and only if
£+ % < u. We prescribe the following conditions
along the boundaryl BDO. Along the archAB, we
prescribe a Dirichlet conditiom = &£ + % which

states that the bounda@ is elliptic degenerate.

Along the cutoff boundar@, we impose a Dirich-
let conditionu = f(n), for an appropriate functiopf.

We require continuity along the parabolic arc,
implying the Dirichlet conditionu = 0. Finally, we
impose a symmetry conditiom, = 0 along@.

To find a solution of the second order equation
(13) in the domainABDO, we first need to modify
the coefficients by cutoff functions to enforce elliptic-
ity. Noticing thato(&,n) = £ + % is a sub-solution
of (13), a comparison principle enables the estimate

2
n

> —.
n 5—1-4

This guarantees the ellipticity of (13) and removal of
the cutoff functions.

Along the sonic boundary) AB, the nonlinear
structure of (13) is crucial to derive the necessary es-
timates (see G.-Q. Chen and Feldman [9]). However,
instead of one side degeneracy as in [9], we have ellip-
tic degeneracy on both sides of the boundary. We be-
lieve that some arguments in [21] by Kohn and Niren-
berg will help resolve this issue.

Once we obtain the solutianof the above second
order equation with mixed boundary conditions, we
find v by integrating equation (3), i.e.,

o) = [y~ (u = Ouedy

3.3

Once we can solve both the hyperbolic and elliptic
problems, we need an iteration scheme to update the
position of the sonic boundary. This will lead to a
mapping for which we need to show that it has a fixed
point.

An interesting question is how to update the sonic
boundary. We recall that in the shock reflection prob-
lems (seeCanic, Keyfitz, Kim, Lieberman and Jegdit
[1]-[4], [17]-[19]), the free boundary is the reflected
shock and the standard way to update the free bound-
ary is to use the Rankine-Hugoniot jump conditions
and the solution of the fixed boundary problem. Here,
the situation is different and we propose that the way
to update the position of the free boundary is to match
the value ofv on both sides. Since this matching is
along the degenerate boundary, one needs to know ad-
ditional information about the values offrom both
sides of the sonic line.

[teration Scheme

4 Conclusion

In this paper, we consider a Riemann problem for the
UTSD equations that leads to interacting rarefaction
waves. We rewrite the problem in self-similar co-
ordinates and obtain a mixed-type system and a free
boundary problem. The free boundary problem con-
sists of two parts — degenerate hyperbolic and degen-
erate elliptic. Our preliminary analysis shows that
both problems are genuinely difficult and require de-
velopment of novel techniques in proving existence of
a solution.
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