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We propose a new Bayesian strategy for adaptation to smoothness in
nonparametric models based on heavy-tailed series priors. We illustrate it in
a variety of settings, showing in particular that the corresponding Bayesian
posterior distributions achieve adaptive rates of contraction in the minimax
sense (up to logarithmic factors) without the need to sample hyperparam-
eters. Unlike many existing procedures, where a form of direct model (or
estimator) selection is performed, the method can be seen as performing a
soft selection through the prior tail. In Gaussian regression, such heavy-tailed
priors are shown to lead to (near-)optimal simultaneous adaptation both in
the L2- and L∞-sense. Results are also derived for linear inverse problems,
for anisotropic Besov classes, and for certain losses in more general mod-
els through the use of tempered posterior distributions. We present numerical
simulations corroborating the theory.

1. Introduction. Adaptation to smoothness is a central topic in nonparametric statistics.
In a regression setting to fix ideas, convergence rates of estimators of the unknown regression
function generally depend on the assumed degree of smoothness and this raises the ques-
tion of finding adaptive estimators, which can recover the unknown truth at (near-)optimal
rate in the minimax sense, without assuming any prior knowledge of regularity. Popular non-
Bayesian adaptation methods include Lepski’s method [40], thresholding [25], and model
selection [10]. Here we follow a Bayesian nonparametric approach and draw the unknown
function randomly according to some prior distribution. In this setting, a possible way to
derive ‘adaptation’ is by following a hierarchical Bayes principle: for instance, one first ran-
domly draws a function of given regularity say α > 0 and then draws α itself at random; this
provides a hierarchical prior distribution which is then updated by conditioning on the ob-
served data to form the posterior distribution. To give an example, initial prior draws can be,
for instance, from an α-smooth Gaussian process (such as Brownian motion when α = 1/2;
and more generally, for example, Brownian motion integrated a fractional number of times);
and α itself can be sampled according to a Gamma distribution.

In this work, we focus on prior distributions given in the form of a stochastic process char-
acterised by a sequence of coefficients into an expansion basis. A popular related example in
statistics and machine learning (e.g., [44]) is the one of Gaussian process priors, for which
van der Vaart and van Zanten [57] proved the following generic result. Suppose we are in a
simple one-dimensional nonparametric regression setting with Gaussian errors (e.g., a white
noise model). If the true regression function is β-smooth in the Sobolev sense, and one con-
siders an α-smooth Gaussian process as a prior distribution, then the posterior distribution
contracts at rate

(1) εn �
{
n−β/(1+2α) if α ≥ β,

n−α/(1+2α) if α ≤ β,

and these rates cannot be improved [15].
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In inverse problems and medical imaging, processes which feature tails heavier than Gaus-
sian are increasingly used. The tails can be ‘moderate’, for instance, inbetween Gaussian and
Laplace tails; see, for example, [2, 23, 39] and [12, 37] for numerical aspects, considering
the case of so-called Besov priors; but also heavier than Laplace, including polynomially de-
creasing tails, such as recently considered, for example, in [48, 51, 52]. Yet overall there is
up to now much less theoretical understanding of processes featuring a form of heavy tails.

The class of α-regular p-exponential measures for p ∈ [1,2] is introduced in [4], where
the authors model the coefficients onto a basis {ϕk} of the function of interest with a prior
with moderate tails (in-between Gaussian and Laplace) and variance decreasing as k−1−2α ;
therein the authors prove posterior contraction at rate

(2) εn �
{
n−β/{1+2β+p(α−β)} if α ≥ β,

n−α/(1+2α) if α ≤ β.

Here the index p corresponds to the tail behaviour of individual coefficients of the prior,
with p = 2 recovering the Gaussian case (1) and p = 1 corresponding to Laplace (double-
exponential) tails; and β again refers to Sobolev smoothness of the true regression function.

A few remarks in the light of (1)–(2) are:

• the optimal (minimax) rate is achieved in both cases for α = β (only);
• when α ≥ β (the ‘oversmoothing case’), when p decreases from 2 to 1, the rate slightly

improves in terms of powers of n−1 from β/(1 + 2α) to β/(1 + β + α);
• when β ≥ α (the ‘undersmoothing case’), the rate is always n−1 to the power α/(1 + 2α),

driven by the prior’s own regularity.

As β is rarely known in practice, the previous prior distributions have to be made more com-
plex if one wishes to derive adaptation. And indeed, two remarkable papers [35, 58] proved
that adaptation in L2-sense can be achieved from α-smooth Gaussian processes, up to loga-
rithmic terms, by either using an additional rescaling variable, or by ‘estimating’ the prior’s
regularity α, either in a hierarchical Bayes or an empirical Bayes way (see also below for re-
lated references). Analogous adaptation results were derived very recently for p-exponential
series priors in [5]; see also [31] for results on related priors in density estimation.

A natural question is thus what happens when tails heavier than Laplace are considered.
This would formally correspond to taking the index p of p-exponential priors to be smaller
than 1 and even going to 0. Let us ‘do’ the formal manipulation p → 0 in (2), and see what
happens. The ‘limiting’ rate would then become n−β/(1+2β) for α ≥ β . This would mean that
at least for the ‘oversmoothing’ case, the ‘adaptive’ rate would be automatically obtained.
Of course we just did a formal substitution that could perhaps not be valid; in particular,
the techniques employed in [4] rely on the logarithmic concavity of p-exponential priors, a
property which no longer holds for p < 1. We will see that, somewhat surprisingly at first,
heavy tails enable, in a variety of settings, to derive adaptation in a fully automatic way.

The meaning of ‘heavy tail’ in the title and through the paper can be understood in the
relatively loose sense of having tails that have a polynomial-type decrease, although the actual
conditions under which we work are somewhat milder.

Heavy tailed series priors. Depending on the setting, we construct priors in L2 := L2[0,1]
via series expansions in either an orthonormal basis {ϕk : k ≥ 1} or an orthonormal boundary-
corrected wavelet basis {ψlk : l ≥ 0, k ∈ Kl} where Kl = {0, . . . ,2l − 1} and where we denote
the scaling function as the first wavelet ψ00. Without loss of generality, we have taken the
coarsest scale to be 1, while it is straightforward to accommodate for coarsest scales finer
than 1. For more details, see [30], Section 4.3.
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Prior � on functions. For 〈·, ·〉 the usual inner product on L2, let fk := 〈f,ϕk〉, respec-
tively, flk := 〈f,ψlk〉, denote the coefficients of f ∈ L2 onto the considered bases, so that

f =
∞∑

k=1

fkϕk, or f =
∞∑
l=0

∑
k∈Kl

flkψlk.

Let us define a prior � on f by letting, for (σk), (sl) sequences to be chosen below, and (ζk),
(ζlk) independent identically distributed random variables of common law H with heavy
tails, also to be specified,

(3) fk
ind.∼ σkζk,

in the case of a single-index basis (ϕk), or for a double-index basis

(4) flk
ind.∼ slζlk.

A key choice of scale parameters σk and sl throughout the paper is, for any k ≥ 1 and l ≥ 0,

(5) σk = e−(log k)2
, sl = 2−l2 .

Another possible choice we consider, again for any such k, l and some α > 0 is

(6) σk = k−1/2−α, sl = 2−l(1/2+α).

The choice (6) corresponds to the same scaling as in (2) and, since here we consider heavy
tails, to (formally at least) setting p = 0 for a p-exponential prior. Contrary to (6), where the
value of α should be chosen, note that (5) is in principle free of any parameter. The choice of
the square in (5) is mostly to fix ideas and results below also hold for σk = e−a(logk)1+δ

with
any given constants a, δ > 0. The fact that (σk) in (5) decreases faster than any polynomial in
k−1, but not exponentially fast (as, for instance, e−k), is key for the results ahead. Similarly,
for double-index bases we can use sl = 2−l1+δ

for any fixed δ > 0 in (5).
To complete the prior’s description, let us now specify the distribution H of the ζ variables

as above. Suppose that H admits a density h on R and that for c1 > 0 and κ ≥ 0,

h is symmetric, positive, bounded and decreasing on [0,∞),(7)

log
(
1/h(x)

) ≤ c1
(
1 + log1+κ(1 + x)

)
, x ≥ 0.(8)

A leading example throughout the paper is the case κ = 0 corresponding to polynomial tails
(sometimes called fat tails): Student distributions, including Cauchy, satisfy these conditions
for c1 large enough constant. Yet, some flexibility is allowed with κ > 0 permitting slightly
lighter tails. Depending on the setting, we sometimes assume a mild integrability or moment
condition, that will still accommodate most Student-type tails.

We call priors � verifying (5)–(7)–(8) oversmoothed heavy-tailed priors or simply OT-
priors while HT(α) for α heavy-tailed priors stand for those satisfying (6)–(7)–(8).

Frequentist analysis of posterior distributions. Consider a statistical model {P (n)
f , f ∈ F}

indexed by a function f with observations X = X(n). Examples considered below include
nonparametric regression, density estimation and classification. Given a prior distribution �

on f , the Bayesian model sets X|f ∼ P
(n)
f and f ∼ �. The posterior distribution �[·|X] is

the conditional distribution f |X. Assuming the model is dominated, the posterior is given as
usual by Bayes’ formula. Taking a frequentist approach, we analyse the posterior �[·|X] un-
der the assumption that X has actually been generated from P

(n)
f0

for some fixed true function
f0. We refer to the book [28] for more context and references.
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Classical regularity balls. Before describing our main results, let us recall three types of
standard smoothness assumptions on the underlying truth f0: Sobolev, Hölder and Besov.

[Sobolev-type] When working with an orthonormal basis {ϕk}, we consider Sobolev-type
assumptions. Recalling that fk = 〈f,ϕk〉, for β,L > 0, denote

(9) Sβ(L) =
{
f = (fk),

∑
k≥1

k2βf 2
k ≤ L2

}
.

For certain choices of ϕk , the sets Sβ(L) correspond to balls of classical Hilbert–Sobolev
spaces of functions in L2[0,1] possessing β square integrable derivatives.

When working with an orthonormal wavelet basis {ψlk} we consider either hyper-rectangle
(Hölder-type) or Besov-type assumptions.

[Hölder-type] For flk = 〈f,ψlk〉 and β,L > 0, let

(10) Hβ(L) =
{
f = (flk),max

k∈Kl

|flk| ≤ 2−l(1/2+β)L for all l ≥ 0
}
.

For wavelet bases with classical Hölder regularity higher than β , the sets Hβ(L) correspond
to L-balls of the Hölder-Zygmund spaces Cβ [0,1], see [30], Section 4.3. For noninteger β

the latter spaces coincide with the classical Hölder spaces Cβ[0,1], while for β an integer it
holds Cβ ′ ⊂ Cβ ⊂ Cβ for all β ′ > β where inclusions are all strict.

[Besov-type] For β,L > 0 and 1 ≤ r ≤ 2, let

(11) Bβ
rr (L) =

{
f = (flk),

∑
l≥0

2rl(β+1/2−1/r)
∑
k∈Kl

|flk|r < Lr

}
.

Again for appropriate wavelet bases, the sets Bβ
rr (L) correspond to L-balls of Besov spaces

B
β
rr [0,1] defined via moduli of continuity, see [30], Section 4.3. For r = 2, Besov spaces

coincide with the Hilbert–Sobolev spaces, while for r < 2 Besov spaces are useful for mod-
elling spatially inhomogeneous functions, that is functions which are smooth in some areas
of the domain and irregular or even discontinuous in other areas, see [24] or [34], Section 9.6.
Here, we restrict to Besov spaces Bβ

rq with r = q for simplicity, see Section 5 for a discussion.
Outline and informal description of the results. In what follows, we will substantiate the

intuition that heavy-tailed series priors achieve adaptation to smoothness without the need
to sample any hyperparameters. Our results show that OT-priors are fully adaptive, and that
HT(α)-priors are partially adaptive (essentially) for smoothness of the truth β ≤ α. More
precisely, in Section 2 we consider white noise regression and show (near-) adaptive posterior
contraction rates in the minimax sense in the following settings:

• in L2-loss for Sobolev regularity in both the direct and a linear inverse problem setting;
• in L∞-loss under Hölder smoothness in the direct setting;
• in L2-loss under (spatially inhomogeneous) Besov smoothness in the direct setting.

A result on the limiting shape of the posterior distribution is also given, in the form of an
adaptive nonparametric Bernstein–von Mises theorem. In Section 3, we establish generic
bounds for the mass that heavy-tailed priors put on L2 and L∞-balls around Sobolev and
Hölder truths, respectively. By themselves, such bounds allow the derivation of contraction
rates for tempered posterior distributions in general models, in terms of Rényi divergence.
Indeed, we exemplify this approach in three nonparametric settings, in which we achieve
(near-) adaptive rates of contraction of tempered posteriors in the minimax sense:

• in density estimation, in L1-loss and under Hölder smoothness of the true log-density;
• in binary classification, in an L1-type loss and under Sobolev smoothness of the logit of

the true binary regression function;
• in (direct) white noise regression, in L2-loss and under Besov smoothness of the truth.
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A simulation study is presented in Section 4, while a brief discussion and review of open
questions can be found in Section 5. Proofs are presented in Section 6 as well as in the
Supplementary Material [3]. The Supplement [3] also includes additional simulations and a
discussion on extending the results of Section 3 to contraction of standard posteriors.

Comparison with other priors. While our results below shall answer positively the question
of obtaining adaptation with heavy-tailed series priors, it is of interest to compare our priors
with other priors leading to adaptation. The list below is by far not exhaustive; we mention a
few classes of priors that bear some similarity with the priors here considered.

• Sieve priors (e.g., [8, 45, 47, 49]). Here adaptation is obtained by truncating the series prior
and taking the truncation parameter K random; note that the distribution on the modelled
K coefficients in general plays little role on the obtained rate. In regression, the above
references show that (near)-optimal adaptive rates are achieved in the L2-norm; but gen-
erally this is not the case in the L∞ norm ([21], Theorem 5). In contrast, we will see that
heavy-tailed series priors in white noise regression are adaptive in both norms.

• Spike-and-slab priors and sparsity inducing priors. Due to their links to thresholding rules,
spike-and-slab (SAS) priors are also particularly natural: [32] show in white noise regres-
sion that SAS posteriors achieve adaptive rates both in L2 (nearly) and L∞ (there are few
results in other models, except [18, 42] in density estimation). While heavy-tailed priors
share the same desirable properties, they do not model sparsity so have no ‘mass at 0’ part;
this can be an advantage computationally, as in more complex models, sampling from SAS
posteriors typically requires exploration of a combinatorial number of models. While sam-
pling from OT posteriors is relatively easy using MCMC, we are not aware of posterior
samplers for SAS in density estimation, for instance (the posterior in [18] is computable
but uses partial conjugacy and is limited to regularities up to 1). The horseshoe prior [14]
is in a sense closer to our proposal as it has density with Cauchy tails. Note though that
similarly to SAS priors and unlike our heavy-tailed prior construction it directly models
sparsity through a diverging density at 0. We expect that horseshoe priors have good adap-
tation properties, although we do not know any proof in a nonparametric context ([14]
present simulations in one such setting)—the techniques we develop here could be used
precisely to derive such results.

• Mixtures. It may be argued that heavy-tailed distributions can be represented as mixtures
of lighter tailed distributions: for instance, Laplace and Student distributions are scale mix-
tures of normals. So, one could view the heavy-tailed prior in a hierarchical manner with
independent Gaussians and one hyper-parameter per coefficient. Note, however, that this
in general does not suffice for adaptation: for instance, Laplace series priors do not adapt
optimally; and even if the resulting distribution on coordinates is, for example, Student, the
choice of scale parameters σk or sl in (5)–(6) is essential as, for instance, (6) does not adapt
if α < β . This shows that only some well-designed mixture priors work. Furthermore, even
if a heavy-tailed law has a mixture representation, this does not mean that it is advantageous
computationally to use it (e.g., using a Gibbs sampling to approximate the posterior; this
may face computational difficulties due to the high number of hyper-parameters), and in
fact we do not do so in Section 4, where we use direct sampling from the posterior via
MCMC in all considered examples. Also related to mixtures, [26] construct a hierarchical
block-prior that enables to derive contraction rates in L2-sense (or with testing distances)
without additional logarithmic terms. The resulting construction requires a specific hyper-
prior, and may be difficult to sample from in complex settings (e.g., beyond white noise
regression); also, although optimal in L2 it is presumably suboptimal in the L∞-sense.
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2. Nonparametric regression. To avoid technicalities independent of the ideas at stake,
we focus in this section on the Gaussian white noise model, that can be seen as the prototyp-
ical nonparametric model [30, 56]. Up to dealing with discretisation effects, similar results
as the ones below are expected to hold also, for example, for fixed-design nonparametric
regression. For f ∈ L2 and n ≥ 1, the Gaussian white noise model writes

(12) dY (n)(t) = f (t) dt + dW(t)/
√

n, t ∈ [0,1],
where W is standard Brownian motion.

2.1. L2-loss and Sobolev smoothness. By projecting (12) onto a single-index orthonor-
mal basis {ϕk} of L2, one obtains the normal sequence model, with fk = 〈f,ϕk〉,
(13) Xk|fk ∼ N (fk,1/n),

independently for k ≥ 1, with Xk = ∫ 1
0 ϕk(t) dY (n)(t). We denote X = X(n) = (X1,X2, . . .)

the corresponding observation sequence. Here for simplicity of notation, we consider only
single-index bases, but the results in the present section and the next hold as well for double-
indexed wavelet bases, such as ones considered in Section 2.3, with the corresponding appro-
priately chosen scalings as in (5)–(6).

Early results for Bayesian series priors (we discuss a few other priors in Section 5) in this
setting include [63], who established nonadaptive convergence rates for the posterior mean
under Gaussian priors, while [11] derived adaptive rates using a hyperprior over a discrete set
of regularities. Still, for Gaussian series priors, in [54] partial adaptation was achieved with
fixed regularity using either a hierarchical or an empirical Bayes choice of a universal scaling
parameter provided the truth is not too smooth compared to the prior, while in the work [35]
full adaptation (up to logarithmic factors) was established using either a hierarchical or an
empirical Bayes choice of the prior regularity. Gaussian series priors on manifolds with an
extra random time parameter were shown to be adaptive to smoothness in broad geometric
contexts [17]. More recently, both fixed-regularity and adaptive results were derived for p-
exponential priors in [4] and [5].

In this section, we consider series priors as in (3)–(5), defined via a heavy-tailed density h

satisfying the moment assumption, for some q ≥ 1,

(14)
∫ ∞
−∞

|x|qh(x) dx < ∞.

THEOREM 1. In the regression model (13), consider the heavy-tailed series prior (3)
with parameters specified by (5) and (7)–(8) as well as (14) with q = 2. Suppose f0 ∈ Sβ(L)

for some β,L > 0. Then as n → ∞,

Ef0�
[{

f : ‖f − f0‖2 > Lnn
−β/(2β+1)}∣∣X(n)] → 0,

where Ln = (logn)d for some d > 0. Further, the same result holds, with a possibly different
d , for the choice of (σk) as in (6), provided α ≥ β . Both results also hold for truncated priors
at k = n, that are the same as the ones considered except they set fk = 0 for k > n.

Theorem 1 shows that the oversmoothed heavy-tailed (OT) prior as in (5)–(8) leads to full
adaptation to smoothness β > 0, without any restriction to the range over Sobolev balls Sβ

(see also Remark 2) and without the need of tuning of any smoothness hyper-parameter. The
fact that the second part of Theorem 1 holds shows that the heuristic presented below (2)
letting p → 0 is correct: if (σk) is polynomially decreasing as σk = k−1/2−α as in (6), then
adaptation holds in the range β ∈ (0, α], that is exactly in the case the prior ‘oversmooths’ the
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truth, as expected from formula (2). For a comparison with other priors and more discussion,
we refer to Section 5.

A difficulty with the proof of Theorem 1 is that it does not seem possible to use the gen-
eral approach to posterior convergence rates as in [27, 28], as the latter requires exponential
decrease of probabilities of sieve sets (at least with infinite series priors or priors modelling
high-frequencies, so excluding sieve priors, for which specific arguments can be used, see,
for example, [8, 45, 49]), which is essential in being able to discard regions of the parameter
spaces, as crucially used in results for Gaussian or p-exponential priors (the latter just allow
for exponential decrease when p = 1). Our proof is based on a detailed analysis of the poste-
rior induced on coefficients, the most delicate part being high-frequencies, for which careful
compensations from numerator and denominator in the ratios arising from Bayes’ formula
are needed. We note that the results in the present section impose a moment condition on the
heavy-tailed density h; this is mostly for technical convenience: it is expected that existence
of a second moment is required in the theorem above, as its proof goes through controlling the
posterior second moment. It is likely that one can remove the moment condition by requiring
a control in probability only; such approach would allow to include the Cauchy density, but
the proof would likely be more technical, so we refrain from pursuing this goal here; we only
note that in this vein results for the Cauchy prior are derived in Section 3.

Numerical intuition behind the result. Underlying our proofs, is the behaviour of heavy-
tailed priors on μ ∈ R in the model X|μ ∼ N (μ,1/n), which we compare here to the be-
haviour of Gaussian priors. Consider μ ∼ σ� where σ is a positive scaling and � is either
standard normal or say a standard Student distribution with 3 degrees of freedom. Recall that
in the Gaussian prior case, the posterior mean is given as E[μ|X] = nσ 2X/(1 + nσ 2). Fig-
ure 1 depicts the posterior mean in the Student prior case as a function of X, for decreasing
values of σ and noise level 1/

√
n = 10−3.5. We observe that in the Student prior case, for

large prior scalings σ the posterior mean is given by the observation (this is similar to the
Gaussian prior case), while for small σ the posterior mean resembles a thresholding estima-
tor, nearly setting to zero small observations and preserving larger observations (this is unlike
the Gaussian prior case where observations are shrunk by a constant factor determined by the
size of σ relative to the noise precision n). In particular, Figure 1 suggests that with the Stu-
dent prior, good recovery is achieved by the posterior mean independently of the size of the
scaling σ , for |X| ≥ 0.002 � 1/

√
n ≈ 0.0003. Contrast this to the Gaussian prior case, where

small σ leads to poor recovery of large observations. It thus appears, that an oversmoothing
heavy-tailed prior may still have good nonparametric behaviour, despite the scaling being
mismatched.

FIG. 1. Left: posterior means for the univariate model X|μ ∼ N(μ,10−7), μ ∼ σ�, plotted against the ob-
served data X, for � a standard Student distribution with 3 degrees of freedom and for 4 values of the scaling σ .
Right: detailed view of the center region of the plot on the left.
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REMARK 1 (Optimal rate and log factors). The rate in Theorem 1 is optimal up to a
logarithmic factor (it can be checked, for instance, that one can take a power d = 1 in Ln

for the OT prior), which we did not try to optimise. A main reason is that work by Tony
Cai [13] shows that any method that is smoothness-adaptive in L2 and separable, in the
sense that it makes coordinates independent, must pay a logarithmic price in its convergence
rate. Moreover, the squared-rate cannot be better than (logn/n)2β/(2β+1) for some β , a rate
(nearly) achieved for tempered posteriors in Theorem 10 below, see Remark 3 and (22).

REMARK 2 (Smoothness and order of basis). Theorem 1 and results below hold for
any smoothness parameter β > 0, over regularity balls defined by coefficients as before. As
usual with estimators defined over bases, if one wishes results over classical Hölder spaces or
Besov spaces defined via moduli of continuity, one needs to assume a basis of large enough
order/regularity (which means adaptation holds in that case over β ≤ βmax, where βmax can
be made as large as desired by choosing the order of the basis large enough).

2.2. Linear inverse problems, Sobolev smoothness. A synthetic prototypical model in
linear inverse problems arises when projecting onto the SVD of the forward operator: the
observation model is, for some ν ≥ 0, independently for k ≥ 1,

(15) Xk|fk ∼ N (κkfk,1/n), κk � k−ν.

This generalises the former signal-in-white-noise setting with the ‘inverse’ nature of the prob-
lem represented by the sequence (κk). This model has been much studied in terms of mini-
maxity and adaptation over Sobolev smoothness in the frequentist literature [22]. Following
a Bayesian approach with Gaussian priors, [36] derived posterior contraction rates in the
nonadaptive case of fixed regularity; again in [35], the authors proved that empirical and
hierarchical Bayes approaches could be used to derive adaptation for the previous class of
Gaussian priors. Results for sieve priors were obtained in [45] (see also Section 5 for more
on this).

THEOREM 2. In the inverse regression model (15) with degree of ill-posedness of the
forward operator ν ≥ 0, consider the heavy-tailed series prior (3) with parameters specified
by (5) and (7)–(8) as well as (14) with q = 2. Suppose f0 ∈ Sβ(L) for some β,L > 0. Then,
as n → ∞,

Ef0�
[{

f : ‖f − f0‖2 > Lnn
−β/(2β+2ν+1)}∣∣X(n)] → 0,

where Ln = (logn)d for some d > 0. Further, the same result holds, with a possibly different
d , for the choice of (σk) as in (6), provided α ≥ β .

Theorem 2 generalises Theorem 1 (the case ν = 0). With the technique and estimates of
the proof of Theorem 1 in hand, its proof via coordinate-estimates is relatively simple; this is
in contrast to existing empirical or hierarchical Bayes proofs in this setting for infinite series
Gaussian priors [35], for which the study of the marginal maximum likelihood estimates (or
of the posterior on the smoothness parameter) requires nontrivial work.

2.3. L∞-loss in white noise regression. Let us now consider estimation under the L∞-
loss, which is a particularly desirable cost function in curve estimation, as a bound in supre-
mum norm guarantees visual closeness between curves. In this case, we expand in a wavelet
orthonormal basis, and the projection of model (12) becomes a normal sequence model

(16) Xlk|flk ∼ N (flk,1/n),
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independently over relevant indices l, k. Again, we denote by X(n) the observation sequence.
Minimaxity and adaptation in supremum loss for Hölder smoothness have been studied ex-
tensively in the frequentist literature [30, 33, 41]. Deriving results for Bayesian procedures
(or more generally for likelihood-based procedures, see, for example, the notes of Chapter 7
of [30]) for this loss is in general quite delicate. Generic results in this direction include [16,
29], but most existing results are concerned with specific models and priors. In white noise
regression, supremum norm adaptation has been derived so far for spike-and-slab priors [32],
and tree priors à la Bayesian CART [21] (up to an unavoidable log factor).

THEOREM 3. In the regression model, let us consider the prior on f induced by the
heavy-tailed wavelet series prior (4) on coefficients flk in (16), with parameters specified by
(5) and (7)–(8) as well as (14) with q ≥ 1. Suppose f0 ∈ Hβ(L) for some β,L > 0. Then, as
n → ∞,

Ef0�
[{

f : ‖f − f0‖∞ > Ln(logn/n)β/(2β+1)}∣∣X(n)] → 0,

where Ln = (logn)d for some d > 0. Further, the same result holds, with a possibly different
d , for the choice of (sl) as in (6) and under (14) with any q ≥ 1, provided α ≥ β + 1/q .

Theorem 3 shows that the OT prior attains the adaptive minimax supremum-norm rate up
to a logarithmic term. This is the first result of this kind for a prior distribution that does not
have a ‘spike’ part that sets coefficients to 0 (as opposed to spike-and-slab and tree priors,
that select a subset of coefficients and set all others to 0). For the HT(α) prior, the condition
α ≥ β + 1/q is for technical reasons and may be suboptimal (note though that as q → ∞ the
condition becomes milder and approaches the one in Theorem 1 for the L2-loss).

2.4. Besov classes. We now consider the case of unknown functions f0 that can be spa-
tially inhomogeneous in the projected white noise model (16). In particular, we study adap-
tation of heavy-tailed priors for underlying true functions with Besov smoothness Bβ

rr (L) for
1 ≤ r < 2. Minimaxity and adaptation over spatially inhomogeneous Besov spaces in this
model have been studied in the frequentist setting in [24]. A distinctive feature is that linear
estimators are provably suboptimal by a polynomial factor. More recently, rates of contrac-
tion in the nonadaptive case of fixed regularity were established using undersmoothing and
appropriately rescaled p-exponential priors with p ≤ r in [4]. Adaptation with p-exponential
priors, p ≤ r , was achieved in [5], Theorem 2.5, using either a hierarchical or an empirical
(marginal maximum likelihood) Bayes choice of both the regularity and scaling parameters
(simultaneously). Importantly, it was established in [6] that Gaussian priors suffer from the
same suboptimality as linear estimators in the frequentist setting. The next result establishes
adaptation with heavy-tailed priors in this setting as well.

THEOREM 4. In the white noise regression model, let � be a heavy-tailed prior gener-
ated by (4) with parameters specified by (5) and (7)–(8) as well as (14) with q = 2. Suppose
f0 ∈ Bβ

rr (L) for some β,L > 0, r ∈ [1,2] and β > 1/r − 1/2. Then, as n → ∞,

Ef0�
[{

f : ‖f − f0‖2 > Lnn
−β/(2β+1)}∣∣X(n)] → 0,

where Ln = (logn)d for some d > 0. Further, the same result holds, with a possibly different
d , for the choice of (σk) as in (6), provided α ≥ β .

The assumption β > 1/r −1/2 is sharp, in the sense that it is the weakest assumption on β

ensuring B
β
rr ⊂ L2, [55], Theorem 3.3.1, a necessary condition since we consider contraction

in L2-loss. This is in contrast to [5], Theorem 2.5, which has a more stringent assumption
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on β (arising due to the necessity of controlling the prior mass uniformly with respect to the
scaling prior-parameter, see Remark 2.6(a) in that source). Another advantage of the above
result is that it provides a very simple and practical framework for achieving adaptation for
spatially inhomogeneous functions which, as discussed in Section 3.4 below, goes beyond the
regression setting. In particular, from the practical point of view and unlike [5], Theorem 2.5,
approximating posteriors in this framework does not require the use of a Gibbs sampler,
which may mix poorly in high dimensions when the data are informative [1], neither does
it require implementing marginal maximum likelihood estimators of prior parameters which
can be technically difficult, especially in more involved models.

2.5. Adaptive nonparametric Bernstein–von Mises theorem. Beyond convergence rates,
one may be interested in the limiting shape of the posterior distribution, as formalised in
nonparametric settings in [19, 20], from which one can deduce, for instance, uncertainty
quantification results on certain functionals of f , as in the application below Theorem 5.

For monotone increasing weighting sequences w = (wl)l≥0, wl ≥ 1, we define multi-scale
sequence spaces

(17) M ≡ M(w) ≡
{
x = {xlk} : ‖x‖M(w) ≡ sup

l

maxk |xlk|
wl

< ∞
}
.

The space M(w) is a nonseparable Banach space (it is isomorphic to ∞). However, the
following space M0 forms a separable closed subspace for the same norm

(18) M0 = M0(w) =
{
x ∈M(w) : lim

l→∞ max
k

|xlk|
wl

= 0
}
.

The white noise model (12) can be rewritten as the sequence model X(n) = f +W/
√

n, where
in slight abuse of notation f is identified with the sequence of its coefficients f = (flk) and
W = (

∫
ψlk dW(t))l,k has the distribution of an i.i.d. sequence of N (0,1) variables. It is not

hard to see that W almost surely belongs to M0 (and X(n) as well for f ∈ L2) under the
condition that wl diverges faster than

√
l, see [20]. Denote τ : f → √

n(f − X(n)). Then
�[·|X(n)] ◦ τ−1 denotes the induced posterior distribution on M0, shifted and rescaled by τ .

For S a given metric space, let βS(P,Q) denote the bounded-Lipschitz metric over prob-
ability distributions P , Q on S. It is well known that βS metrises weak convergence on S.

THEOREM 5. In the regression model, let us consider the heavy-tailed wavelet series
prior (4) on coefficients flk in (16), with parameters specified by (5) and (7)–(8). Consider
the multiscale space M0 as in (18) with wl = l1+κ+ε for some ε > 0. Suppose f0 ∈ Hβ(L)

for some β,L > 0. Then

Ef0βM0

(
�

[·|X(n)] ◦ τ−1,L(W)
) → 0

as n → ∞, where L(W) denotes the law of a Gaussian white noise in M0. Further, the same
result holds for (sl) as in (6) with wl = l(1+κ+ε)/2, for some ε > 0 (and any α > 0).

The heavy-tailed priors we consider thus automatically satisfy an adaptive nonparametric
Bernstein–von Mises theorem [46]. As opposed to results of this type obtained in the literature
so far, note that we do not need to modify the prior to impose a flat initialisation; [46] proves
that this is necessary for spike-and-slab priors: for these one needs to remove the spikes
from a slowly increasing number of coordinates to allow for Gaussian finite-dimensional
distributions in the limit (otherwise small signals can erroneously be classified into the spike
part by the posterior; the same holds for Bayesian CART, see [21]). Here the heavy-tailed
prior is continuous, so asymptotic normality holds even for arbitrarily low frequencies: this
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is because the prior induced on the first coordinates has a continuous and positive density on
the whole real line, so the conditions of (a version of) the parametric Bernstein–von Mises
theorem are satisfied, see the proof of Theorem 5 in the Supplementary Material [3].

Application. An implication of Theorem 5 is the following (using [20], Theorem 4): a
Donsker-type theorem holds for the posterior distribution with heavy-tailed priors when esti-
mating the primitive F(·) = ∫ ·

0 f (u)du of f : for B standard Brownian motion and L(‖B‖∞)

the distribution of its supremum on [0,1], in P0-probability,

βR

(
L

(√
n
∥∥F(·) − X(n)(·)∥∥∞

∣∣X(n)),L(‖B‖∞
)) → 0,

where L(F (·)|X(n)) denotes the posterior distribution on F induced from the posterior on f

through the primitive map f → F . From this, one immediately deduces that supremum-norm
quantile credible bands for F are asymptotically optimal (efficient) confidence bands for F0,
see [20] for details and discussion.

3. Prior mass bounds and ρ-posterior convergence. In this section, we first derive
lower bounds for the prior mass that heavy-tailed priors put on L2- and L∞-balls, around
Sobolev and Hölder functions. These bounds next enable us to obtain contraction rates for
tempered posteriors (ρ-posteriors) in a variety of nonparametric settings: as examples, we
consider density estimation, binary classification and regression (the latter under Besov reg-
ularity of the truth). As a slight variant to the moment assumption (14), here we require the
tail condition: for some c2 > 0,

(19) H(x) :=
∫ ∞
x

h(u)du ≤ c2/x
2, x ≥ 1.

Condition (19) allows for most Student distributions; Cauchy tails can also be accommodated,
see Remark 5 below and Remark B.1 in the Supplementary Material [3].

3.1. Generic prior mass results.

THEOREM 6 (Generic prior mass condition in L2). For � a prior generated by (3):

• Suppose (σk) is as in (6) for α > 1/2 and assume (7)–(8)–(19). For β > 0, let

(20) εn = (logn)
1+(1+κ)β

2β+1 n
− β

2β+1 .

Then for any β ≤ α, L > 0 and f0 ∈ Sβ(L), it holds that for any d2 > 0 there exists d1 > 0
sufficiently large such that

�
[‖f − f0‖2 < d1εn

] ≥ e−d2nε2
n.

• Suppose (σk) is defined, for some a, δ > 0, by

(21) σk = e−a(log k)1+δ

,

and assume (7)–(8)–(19). For β > 0, let

(22) εn = (logn)
(1+κ)(1+δ)β

2β+1 n
− β

2β+1 .

Then for any β > 0, L > 0 and f0 ∈ Sβ(L), it holds that for any d2 > 0 there exists d1 > 0
sufficiently large such that

�
[‖f − f0‖2 < d1εn

] ≥ e−d2nε2
n.
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REMARK 3 (Logarithmic factor). For the OT prior with κ = 0, the logarithmic term is
nearly the best possible one (see Remark 1) up to a power C · δ (for some constant C = C(β)

depending on β only) that can be made arbitrarily small by taking a small δ.

THEOREM 7 (Generic prior mass condition in L∞). For � a prior generated by (4):

• Suppose (sl) is as in (6) for α > 1/2 and assume (7)–(8)–(19). For β > 0, let

(23) εn = (log logn)
2

1+2β (logn)
1+(1+κ)β

1+2β n
− β

2β+1 .

Then for any β ≤ α, L > 0 and f0 ∈Hβ(L), it holds that for any d2 > 0 there exists d1 > 0
sufficiently large such that, for large enough n,

�
[‖f − f0‖∞ < d1εn

] ≥ e−d2nε2
n .

• Suppose (sl) is as in (5) and assume (7)–(8)–(19). For β > 0, let

(24) εn = (logn)
(2+2κ)β

1+2β n
− β

2β+1 .

Then for any β > 0, L > 0 and f0 ∈Hβ(L), it holds that for any d2 > 0 there exists d1 > 0
sufficiently large such that, for large enough n,

�
[‖f − f0‖∞ < d1εn

] ≥ e−d2nε2
n .

Prior mass results as obtained in Theorem 6–7 are a key preliminary step for obtaining
posterior contraction rates. Yet, as noted above, the general theory in [27, 28] also typically
requires exponentially decreasing prior masses for certain portions of the parameter space
(which can then be ‘tested out’). A major difficulty with (nontruncated) heavy-tailed series
priors is that prior masses that are exponentially decreasing correspond to extremely small
(or ‘far-away’) sets, so usual approaches via entropy control of sieve sets seem out of reach.
While we were able in Section 2 to derive all the results for classical posteriors, here we use
instead tempered posteriors: these are defined as, for 0 < ρ ≤ 1, by

�ρ[B|X] =
∫
B(p

(n)
f (X))ρ d�(f )∫

(p
(n)
f (X))ρ d�(f )

,

for measurable B . The usual posterior corresponds to ρ = 1 while ρ < 1 ‘tempers’ the influ-
ence of the likelihood. Tempered posteriors require only a prior mass condition to converge
[59, 62]. Inference in terms of uncertainty quantification can also be conducted with these,
see [38]. We refer to the Supplementary Material [3] for more context (Section A therein)
and a precise statement (Section D). We also note that the results to follow are obtained for
any ρ < 1 but not for ρ = 1 (except in white noise regression where results hold for both).
Deriving results for ρ = 1 in general models is beyond the scope of the present work but is
an interesting avenue of future research. A detailed discussion on possible approaches to this
can be found in the Supplementary Material [3], Section A.

REMARK 4. The condition α > 1/2 for the HT(α) prior is a technical condition; it can
be checked using similar bounds as in the proof of Theorem 7 that, under that condition, a
draw f from the prior (4) is bounded �-almost surely, which in particular ensures that ef is
integrable, a fact used for inducing a density in (25) below.
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3.2. Density estimation. From a prior defined by (4) and (5), a prior on densities on [0,1]
is easily defined by exponentiation and renormalisation: for f bounded and measurable, let

(25) g(x) = gf (x) = ef (x)∫ 1
0 ef (u) du

.

THEOREM 8 (Density estimation). Consider data X = (X1, . . . ,Xn) sampled indepen-
dently from a density g0 on [0,1] that is bounded away from 0 and suppose f0 := logg0 ∈
Hβ(L) for some β > 0. Let � be a prior on densities g generated by (25), with parameters
on the prior on f as in the statement of Theorem 7 (e.g., α > 1/2 for the HT(α) prior) with
corresponding rates εn as in (23) or (24). For any ρ < 1, there exists M = M(ρ) > 0 with

Eg0�ρ

[‖g − g0‖1 > Mεn|X] → 0

as n → ∞, and where P0 = Pg0 .

Theorem 8 derives adaptive posterior contraction for the ρ-posterior at minimax rate (up
to a logarithmic term) in density estimation. The term (1−ρ)−1 is expected since it is known
that usual posteriors may not converge without entropy and sieve conditions. This result can
be seen as a counterpart for heavy-tailed priors to results for usual posteriors in density esti-
mation for Gaussian priors [58], recently obtained also for Laplace priors in [31]. Sampling
from tempered posteriors is generally of comparable difficulty compared to classical pos-
teriors, and since there is no hyper-posterior on the smoothness parameter to sample from
with the considered heavy-tailed priors, sampling in density estimation is relatively easy and
carried out in Section 4- and this even though the model does not tensorise over coordinates.

3.3. Classification. Consider independent observations (X1, Y1), . . . , (Xn,Yn) from a
given distribution of a random variable (X,Y ), where Y ∈ {0,1} is binary and X takes val-
ues in X = [0,1]d for d ≥ 1. The interest is in estimating the binary regression function
h0(x) = P(Y = 1|X = x). Consider the logistic link function �(u) = 1/(1 + e−u) and de-
note its inverse by �−1. From a function f sampled from (4)–(6) (or (4)–(5)), setting

(26) hf (x) = �
(
f (x)

)
induces a prior distribution � on binary regression functions. The density of the data (X,Y )

given f equals pf (x, y) = hf (x)y(1 − hf (x))1−yg(x), where g(x) denotes the marginal
density of X. Denote by ‖ · ‖G,1 the L1(G) norm on X and by P0 the true data generating
distribution with regression f0 and marginal g (note that Bayesian modelling of g is not
needed for inference on f as it factorises from the likelihood).

THEOREM 9 (Classification). Consider data (X,Y ) from the binary classification model.
Suppose f0 = �−1h0 belongs to the Sobolev ball Sβ(L) for β,L > 0. Let � be a prior
generated by (26), with parameters on the prior on f as in the statement of Theorem 6 with
corresponding rates εn as in (20) or (22). Then for any given ρ < 1, there exists M = M(ρ)

such that, as n → ∞,

EP0�ρ

[‖pf − pf0‖G,1 > Mεn|X1, Y1, . . . ,Xn,Yn

] → 0.

Theorem 9 derives adaptation for binary classification. Once again, simulation from (an
approximation of) the ρ-posterior can be carried out using a direct MCMC method without
the need of hyperparameter sampling, see Subsection E.4 in the Supplementary Material [3]
for details.
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3.4. Besov classes. We now provide results for possibly spatially inhomogeneous func-
tions and ρ-posteriors. We restrict for simplicity to white noise regression and to variances
as in (5). The following theorem shows that Theorem 4 also holds for ρ-posteriors, ρ < 1.

THEOREM 10. In the white noise regression model, for � a prior generated by (4) and
(5), assume (7)–(8)–(19) hold. Suppose f0 ∈ Bβ

rr (L) for some β,L > 0, r ∈ [1,2] and β >

1/r − 1/2. Then, for any given ρ < 1, as n → ∞,

Ef0�ρ

[{
f : ‖f − f0‖2 > Lnn

− β
2β+1

}∣∣X(n)] → 0,

where Ln = (logn)d for some d > 0.

We observe excellent empirical behaviour in simulations of the corresponding posterior
distributions in terms of adaptation and signal fit on a variety of inhomogeneous test signals,
see Section E.2 in the Supplementary Material [3]. A proof of Theorem 10 could be given
following similar arguments as for Theorem 4 (i.e., relying on the approach of Theorems
1–3). The proof we provide in the Supplementary Material relies on prior mass arguments.
Indeed, the latter are easier to generalise to more other settings (such as density estimation as
above) modulo slight adaptation of the conditions. A more systematic study of convergence
in Besov spaces in different models and for different losses is beyond the scope of the present
work and is the object of forthcoming work.

4. A simulation study. We consider the following four simulation settings:

(a) inverse regression with Sobolev/spatially homogeneous truth,
(b) spatially inhomogeneous truth in white noise regression,
(c) density estimation with Hölder-regular truth,
(d) binary classification with Sobolev-regular truth.

Here we present the setting (a) and a simulation for (c) for illustration, and refer to the Sup-
plementary Material, Section E, for more details.

Inverse regression. We consider the model studied in [35], Section 3, and [53], Section 4,
where one observes the process

Xt =
∫ t

0

∫ s

0
f (u)duds + 1√

n
Bt , t ∈ [0,1],

for Bt a standard Brownian motion and f ∈ L2[0,1] the unknown function. This is a linear
inverse problem with the Volterra integral operator Kf (t) = ∫ t

0 f (u)du as forward operator,
which has eigenfunctions ek(t) = √

2 cos(π(k − 1/2)t) and corresponding eigenvalues κk =
π/(k − 1/2), for k ≥ 1. Equivalently, we study the normal sequence model

Xk|fk
ind∼ N (κkfk,1/n), k ≥ 1,

where fk are the coefficients of the unknown with respect to the orthonormal system formed
by the eigenfunctions (ek), so that we are in the setting of Section 2.2. As underlying truth we
use a function with coefficients with respect to (ek) given by f0,k = k−3/2 sin(k). In particular,
the truth can be thought of as having Sobolev regularity (almost) β = 1.

We consider priors on the coefficients of the unknown of the form fk = σkζk for i.i.d. ζk ,
for three different choices of the standard deviations σk and/or the distribution of ζ1:

• Gaussian hierarchical prior: σk = k−1/2−α with α ∼ Exp(1), ζ1 standard normal;
• HT(α) prior: σk = k−1/2−α with α = 5, ζ1 Student distribution with 3 degrees of freedom;
• OT prior: σk = e−a(log k)1+δ

, with a = 1, δ = 0.5 and ζ1 again a Student t3 distribution.
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Note that, on purpose, in order to test the robustness of the method, we take a very ‘un-
favourable’ α for the HT(α) prior, with α = 5 much larger than the true smoothness β = 1
here. Furthermore, for the OT prior we use δ = 0.5 instead of δ = 1 used in our analysis. As
noted in Section 1, the contraction rates are identical for any δ > 0, however we found ‘the
finite’ n behaviour to be slightly better for δ = 0.5 compared to δ = 1 (although the differ-
ence seemed relatively small in all conducted experiments), so we kept this choice through
the simulations.

To sample the posterior arising from the Gaussian hierarchical prior, we employ a
Metropolis-within-Gibbs sampler which alternates between updating the α|f , X and f |α,
X (with an appropriate parametrization, centered or noncentered depending on the size of
the noise, to optimize the mixing of the α-chain, see [1]). For the two Student priors, due to
independence, the posterior decomposes into an infinite product of univariate posteriors. We
use Stan, with random initialization uniformly on the interval (−2,2), to sample each of the
univariate posteriors [50] (it is also possible to code this manually, e.g., via a Random Walk
Metropolis). In all three cases, we truncate at K = 200, which, for the considered regularities
of the truth and the priors, suffices for the truncation error to be of lower order compared to
the estimation error.

In Figure 2, we present posterior sample means as well as 95% credible regions for various
noise levels, computed by taking the 95% out of the 4000 draws (after burn-in/warm up)
which are closest to the mean in L2-sense. The OT prior appears to perform at least as well as
the Gaussian hierarchical prior at all noise levels both in terms of the posterior sample mean
as well as uncertainty quantification (this is expected from the theory, since the OT posterior
is guaranteed to converge (near)-optimally for both quadratic and supremum norm). For the
HT(α) prior, although α is very far off the true smoothness, we see that as n increases the
posterior is still able to approximately match the unknown truth. Compared to the OT prior, in
this setting the HT(α) prior appears to be overconfident in all but the lowest noise levels. This
is a ‘finite n’ phenomenon, which can be explained by the behaviour of the univariate Student
prior in the model X ∼ N (f,1/n) as detailed in Section 2 (but adapted to accommodate κk):
since κkσk = k−6.5 becomes very small already for small k, among coefficients with small
signal-to-noise ratio, very few get a significant value under the posterior and hence there
is very little variance in the posterior. Although asymptotically for k → ∞ the scalings of
the OT prior decay even faster, κkσk = k−1e−(logk)3/2

remains large (relatively to 1/
√

n) for
more frequencies, hence more frequencies get a significant value under the posterior and the
posterior on the function f exhibits more variability.

In Section E of the Supplementary Material [3], we additionally study ρ-posteriors in this
setting for the two Student priors, with similar conclusions as for the classical posteriors. We
also compare the behaviour of the HT(α) prior and a corresponding Gaussian process prior
both with α = 5, as an illustration of the ‘tail-adaptation’ property which takes place for the
HT prior but, as expected, not for the Gaussian prior.

Density estimation. We consider the density estimation setting of Section 3.2, for a true
density g0 defined via (25) with f0 a 2-Hölder smooth function defined via its coefficients in
a certain wavelet basis. We consider an α-smooth Gaussian prior, and Cauchy HT(α) and OT
priors, where α = 5. In Figure 3, we present the corresponding posteriors. Even though we
are not in a product space, hence we have to use a function space MCMC algorithm, Cauchy
priors show excellent performance without the requirement of a Gibbs Sampler for sampling
a smoothness hyper-parameter. For more details, additional experiments and a comparison to
a standard frequentist estimator, see Section E in the Supplementary Material [3]. The code
for all our experiments with heavy-tailed priors is available at https://www.mas.ucy.ac.cy/
sagapi01/assets/code/code-HT-BNP-adapt.zip.

https://www.mas.ucy.ac.cy/sagapi01/assets/code/code-HT-BNP-adapt.zip
https://www.mas.ucy.ac.cy/sagapi01/assets/code/code-HT-BNP-adapt.zip
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FIG. 2. White noise model: true function (black), posterior mean (blue), 95% credible regions (grey), for
n = 103,105,107,109,1011 top to bottom and for the three considered priors left to right.
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FIG. 3. Density estimation: true density (black dashed), posterior mean (blue), 95% credible regions (grey), for
n = 102,104,106 top to bottom and for the three considered priors left to right.

5. Discussion. We have introduced a new prior, the oversmoothed heavy-tailed (OT)
prior, which we show leads to Bayesian nonparametric adaptation to smoothness in a wide
array of settings. One main appeal is that it is only defined from the basis coefficients one
wishes to model, without extra need of hyper-parameters to derive adaptation.

While some prior classes can be seen as Bayesian analogues of nonparametric adaptation
methods (e.g., sieve priors↔model selection, spike-and-slab↔thresholding), the OT prior
achieves adaptation through the prior distribution’s (heavy) tails, so in a sense is distinctively
Bayesian in spirit.

Open directions. While this work proposes a novel class of adaptive priors and closes a gap
in the literature by showing that the phase transition from light (e.g., Gaussian) and moderate
(e.g., exponential) tails in infinite series priors to heavy-tails comes with obtaining automatic
adaptation, it opens a number of questions for future work. First, the fact that the prior per-
forms a ‘soft’ model selection—by this we mean that many coefficients are close to zero but
not exactly zero under the posterior—is of interest for complex models, where performing a
‘hard’ model selection (as is the case for spike and slab priors that set coefficients exactly to
0) can be computationally intensive. We are currently working on adaptation on deep ReLU
neural networks using such heavy-tailed priors; another interesting direction is that of sparse
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settings. Among computationally less demanding alternatives to hard model selection, let us
also mention the possibility to use a variational Bayes approach, see, for example, [7, 60,
61], although then approximating a different object than the posterior or tempered posterior
itself. Second, we conjecture that the results of Section 3 also hold for classical posteriors.
This is in particular supported by numerical evidence from Section 4. Although beyond the
scope of the present contribution, this suggests that one could possibly extend the general
posterior rates theory [27, 28] beyond cases where exponential decrease of sieve set proba-
bilities is available. Third, it would also be particularly interesting to study the computational
complexity of heavy-tailed priors in the spirit of the recent works [9, 43].

6. Proof of the main results. Here we prove Theorems 1 and 6, and related technical
lemmas. Proofs of the remaining theorems can be found in the Supplementary Material [3].

PROOF OF THEOREM 1. Let εn = n−β/(2β+1) and Kn be the (closest integer) solution to

(27) Kn = n1/(2β+1).

For An a suitable event to be defined below, using Markov’s inequality,

Ef0�
[‖f − f0‖2 > vn|X(n)] ≤ Pf0

(
Ac

n

) + v−2
n Ef0

[∫
‖f − f0‖2

2 d�
(
f |X(n))1lAn

]
,

where we choose vn = Lnεn. For f ∈ L2, let f [Kn] denote its orthogonal projection onto the
linear span of the first Kn basis vectors and set f [Kc

n] := f − f [Kn]. Then

‖f − f0‖2
2 = ∥∥f [Kn] − f

[Kn]
0

∥∥2
2 + ∥∥f [Kc

n] − f
[Kc

n]
0

∥∥2
2

≤ ∥∥f [Kn] − f
[Kn]
0

∥∥2
2 + 2

∥∥f [Kc
n]∥∥2

2 + 2
∥∥f [Kc

n]
0

∥∥2
2.

By definition of Sβ(L), we have ‖f [Kc
n]

0 ‖2
2 �K

−2β
n � ε2

n. Next∫ ∥∥f [Kn] − f
[Kn]
0

∥∥2
2 d�

(
f |X(n)) ≤ 2

∑
k≤Kn

∫
(fk − Xk)

2 d�
(
f |X(n)) + 2

∑
k≤Kn

(Xk − f0,k)
2.

Under Ef0 , the second sum on the right-hand side is bounded by Kn/n. For the first term,
Lemma 1 used on coordinate k combined with Lemma 2 gives, for any t > 0,

nEf0

∫
(fk − Xk)

2 d�
(
f |X(n)) � t−2

{
1 + t4 + log2+2κ

(
1 + L + 1/

√
n

σk

)}
.

This is optimised in t by taking t4 of the order of the log term in the last display, leading to

(28) nEf0

∫
(fk − f0,k)

2 d�
(
f |X(n)) � log1+κ

(
1 + L + 1/

√
n

σk

)
.

Using σ−1
k ≤ σ−1

Kn
, the last term is at most of logarithmic order in n for both choices of σ , so

Ef0

∫ ∥∥f [Kn] − f
[Kn]
0

∥∥2
2 d�

(
f |X(n)) � (logn)d

Kn∑
k=1

1

n
� (logn)dKn/n � (logn)dn

− 2β
2β+1 .

Let us now turn to bounding the term
∫ ‖f [Kc

n]‖2
2 d�(f |X). We first claim that it is enough

to focus on the set of indices k for which |f0,k| ≤ 1/
√

n. Indeed, if Nn is the cardinality of

(29) Nn := {
k : |f0,k| > 1/

√
n
}
,

we have L2 ≥ ∑
k∈Nn

k2βf 2
0,k ≥ n−1 ∑Nn

k=1 k2β � N
2β+1
n /n, so that Nn � Kn. Further, if k ∈

Nn then k ≤ (L2n)1/(2β). This means that for any index k ∈ Nn, one can use bound (28)
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(which holds for any k) similarly to the case k ≤ Kn, just using σ−1
k ≤ σ−1

(L2n)1/(2β) this time,

giving a bound in (28) which is logarithmic in n. In other words, for some d ′ > 0,

Ef0

∫ ∑
k∈Nn

(fk − f0,k)
2 d�

(
f |X(n)) � (logn)d

′ ∑
k∈Nn

1

n
� (logn)d

′ Kn

n
� (logn)d

′
n

− 2β
2β+1 .

Further note that for both choices of σ ’s (6) and (5), for any k > Kn, one has σk � 1/
√

n: this
results from the definitions, using α ≥ β for the choice (6).

We now focus on indices k ∈ {k > Kn : |f0,k| ≤ 1/
√

n} and bound Ef0

∫
f 2

k d�(f |X). Us-
ing Bayes’ formula, it is enough to bound the following terms individually, where φ denotes
the standard normal density,∫

f 2
k d�

(
f |X(n)) =

∫
θ2φ(

√
n(Xk − θ))h(θ/σk) dθ∫

φ(
√

n(Xk − θ))h(θ/σk) dθ
=: N

D
.

To bound the numerator N , we use |φ| ≤ ‖φ‖∞ and
∫

θ2h(θ/σk) dθ = σ 3
k

∫
u2h(u)du � σ 3

k ,
using (14) with q = 2, so that N � σ 3

k regardless of Xk .
The denominator is bounded as follows. By symmetry of both φ and h, it is enough to

focus on the case Xk ≥ 0 (denoting D = D(Xk), we have D = D(−Xk)).
We first deal with the case of super-light variances (5). Let (xk) be a deterministic nonneg-

ative sequence to be chosen. By restricting the denominator to the set [Xk − xk,Xk + xk],
D ≥ φ(

√
nxk)

∫ Xk+xk

Xk−xk

h(θ/σk) dθ.

Assuming Xk ≤ xk , the integral in the last display can be further bounded from below by∫ xk

0 h(θ/σk) dθ = σk

∫ xk/σk

0 h(u)du, recalling Xk ≥ 0. Further assuming that σk � xk , the
latter integral is further bounded below, for some c > 0, by

∫ c
0 h(u)du� 1. Putting everything

together and using symmetry, one gets, if σk � xk ,

N

D
1l|Xk |≤xk

≤ σ 2
k

1l|Xk |≤xk

φ(
√

nxk)
.

Define the events, for j ≥ 0, k ≥ 1 and with a ∨ b = max(a, b),

Ak,j :=
{
|Xk| ≤

√
4 log{n(j2 ∨ 1)}

n

}
,(30)

An(Nn) := ⋂
Kn<k≤n,k∈N c

n

Ak,0 ∩ ⋂
j≥1

⋂
jn<k≤(j+1)n,k∈N c

n

Ak,j .(31)

Let us set xk = (4n−1 log{n(j2 ∨1)})1/2 whenever jn < k ≤ (j +1)n. The constraint σk � xk

is trivially satisfied when k > Kn for this choice of xk and large enough n since then σk �
1/

√
n as noted above. Then, with An = An(Nn), using that (σk) is decreasing,

Ef0

∑
k>Kn,k∈N c

n

∫
f 2

k d�
(
f |X(n))1lAn

≤ ∑
Kn<k≤n,k∈N c

n

σ 2
k

φ(
√

nx0)
+ ∑

j≥1

∑
jn<k≤(j+1)n,k∈N c

n

σ 2
k

φ(
√

nxk)

≤ nσ 2
Kn

/φ(
√

nx0) + ∑
j≥1

∑
jn<k≤(j+1)n,k∈N c

n

σ 2
jn/φ(

√
nx(j+1)n)

� n3σ 2
Kn

+ ∑
j≥1

nσ 2
jn

(
nj2)2 � n3

(
e−2{logKn}2 + ∑

j≥1

e−2{log(nj)}2
j4

)
.
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The latter bound is o(n−M) for arbitrary M > 0, which, combined with Lemma 3, concludes
the proof for σk as in (5).

Let us now turn to the case of variances as in (6). In this case, one slightly updates the
definition of Nn by choosing

(32) Mn = {
k : |f0,k| > δn/

√
n
}
,

with δn := 1/
√

logn. In slight abuse of notation we still denote An = An(Mn) below. Note
that as above one can first deal with indices k ∈ Mn using the same bounds as before; rea-
soning as above, there are at most mn ≤ (n logn)1/(2β+1) � Kn(logn)1/(2β+1) such indices,
so their overall contribution to the quadratic risk is within a logarithmic factor of Kn/n.

Thus it is enough to focus on the indices k > Kn and k /∈ Mn. If
√

n|Xk| ≤ 1, then the
above bounds for N , D can be used with 1/

√
n in place of xk , leading to, for k > Kn,

N

D
1l√n|Xk |≤1 � σ 2

k φ(1)−1.

One splits, recalling the definition of xk = (4n−1 log{n(j2 ∨ 1)})1/2,

N

D
1l√n|Xk |>11l|Xk |≤xk

= ∑
p≥1

N

D
1l√p<

√
n|Xk |≤√

p+11l|Xk |≤xk

≤
4 log(n(j2∨1))∑

p=1

N

D
1l√p<

√
n|Xk |≤√

p+1.

We bound from below D, on the event {√p <
√

n|Xk| ≤ √
p + 1}, as follows, for Xk ≥ 0,

D ≥ φ(
√

nXk)

∫ Xk

0
h(θ/σk) dθ ≥ σkφ(

√
p + 1)

∫ Xk/σk

0
h(u)du� σkφ(

√
p + 1),

by restricting the denominator to [0,Xk] and using Xk/σk ≥ 1/(
√

nσk) � 1 for k > Kn. By
symmetry, the same bound also holds in case Xk ≤ 0. So, for given k,

4 log(n(j2∨1))∑
p=1

N

D
1l√p<

√
n|Xk |≤√

p+1 � σ 2
k

4 log(n(j2∨1))∑
p=1

1l√p<
√

n|Xk |≤√
p+1

φ(
√

p + 1)
,

where we use the universal bound N � σ 3
k obtained above. Then

Ef0

∑
k>Kn,k∈Mc

n

∫
f 2

k d�(f |X)1lAn

� Ef0

∑
Kn<k≤n,k∈Mc

n

σ 2
k

{
1 +

4 logn∑
p=1

1l√p<
√

n|Xk |≤√
p+1

φ(
√

p + 1)

}

+ Ef0

∑
j≥1

∑
jn<k≤(j+1)n,k∈Mc

n

σ 2
k

{
1 +

4 log(nj2)∑
p=1

1l√p<
√

n|Xk |≤√
p+1

φ(
√

p + 1)

}
.

We have, for k ∈ Mc
n, denoting �̄(u) = ∫ +∞

u φ(t) dt ,

Ef01l√p<
√

n|Xk |≤√
p+1 = P

(∣∣N (0,1) + f0,k

√
n
∣∣ ∈ [√p,

√
p + 1])

≤ 2
{
�̄(

√
p − δn) − �̄(

√
p + 1 + δn)

} ≤ 2φ(
√

p − δn)/(
√

p − δn),
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by removing the negative term and using the standard bound �̄(x) ≤ φ(x)/x for x > 0. Now

1√
p − δn

φ(
√

p − δn)

φ(
√

p + 1)
= e1/2

√
p − δn

e−δ2
n/2+√

pδn.

First dealing with the term k ≤ n, one deduces, recalling δn = (logn)−1/2,

∑
Kn<k≤n,k∈Mc

n

σ 2
k

4 logn∑
p=1

Pf0(
√

p <
√

n|Xk| ≤ √
p + 1)

φ(
√

p + 1)

�
∑

Kn<k≤n,k∈Mc
n

σ 2
k

4 logn∑
p=1

1√
p

e
√

pδn

�
∑

Kn<k≤n,k∈Mc
n

σ 2
k

4 logn∑
p=1

1√
p
�

∑
Kn<k≤n,k∈Mc

n

σ 2
k

√
logn,

where one uses the previous bounds. Similarly,

∑
j≥1

∑
jn<k≤(j+1)n,k∈Mc

n

σ 2
k

4 log(nj2)∑
p=1

Pf0(
√

p <
√

n|Xk| ≤ √
p + 1)

φ(
√

p + 1)

≤ ∑
j≥1

∑
jn<k≤(j+1)n

σ 2
k

4 log(nj2)∑
p=1

1√
p

e
√

pδn �
∑
j≥1

∑
jn<k≤(j+1)n

σ 2
k

√
log

(
nj2

)
e2

√
log(nj2)δn .

Using that nj2 ≤ (nj)2 ≤ k2 for k > (nj) one gets that the last display is bounded up to a
constant multiplicative factor by∑

j≥1

∑
jn<k≤(j+1)n

σ 2
k

√
log ke4

√
log kδn = ∑

k>n

σ 2
k

√
log ke4

√
log kδn.

Since
√

log ke4
√

logkδn ≤ eη log k for any k ≥ n for η > 0 fixed as small as desired for large
enough n, the last display is bounded by

∑
k≥n σ 2

k kη � n−2α+η = o(n−2α/(2α+1)) for small
enough η. Putting the previous bounds together one gets

Ef0

∑
k>Kn,k∈Mc

n

∫
f 2

k d�
(
f |X(n))1lAn �

n∑
k=Kn

σ 2
k (1 +

√
logn) + o

(
n− 2α

2α+1
)
�

√
logn

n2α/(2α+1)
,

using (6). This bound is O((
√

logn)n−2β/(2β+1)) if α ≥ β , which, combined with Lemma 3,
concludes the proof for σk as in (6). �

PROOF OF THEOREM 6. Let K ≥ 2 be an integer, and for a function f in L2, let as
before f [K] denote its projection onto the linear span of ϕ1, . . . , ϕK and f [Kc] = f − f [K].
Then

�
[‖f − f0‖2 < ε

]
≥ �

[∥∥f [K] − f
[K]
0

∥∥
2 < ε/2,

∥∥f [Kc] − f
[Kc]
0

∥∥
2 < ε/2

]
≥ �

[
∀k ≤ K, |fk − f0,k| ≤ ε

2
√

K
; ∀k > K, |fk| ≤ ε

D
√

k logk

]
1l‖f [Kc]

0 ‖2<ε/4

=
K∏

k=1

�

[
|fk − f0,k| ≤ ε

2
√

K

]
�

[
∀k > K, |fk| ≤ ε

D
√

k log k

]
1l‖f [Kc]

0 ‖2<ε/4
,
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where D is a large enough constant, and where we have used independence of the coefficients
under the prior and the fact that k−1/2/ log(k) is a square-summable sequence.

Suppose the indicator in the last display equals one, which imposes ‖f [Kc]
0 ‖2 < ε/4, for

which a sufficient condition is, if f0 is in Sβ(L),

(33) K−2βL2 < ε2/16.

Let us now bound each individual term pk := �[|fk − f0,k| ≤ ε/(2
√

K)]. By symmetry,
for any k ≤ K , one can assume f0,k ≥ 0 and

pk ≥
∫ f0,k+ε/(2

√
K)

f0,k

σ−1
k h(x/σk) dx ≥ ε

2
√

K
h(C/σK),

where we have used that (σk) is decreasing as well as x → h(x) on [0,∞) by assumption,
and that f0,k +ε/(2

√
K) ≤ C since |f0,k| are bounded by L for f0 ∈ Sβ(L). For either choice

of σk it holds log(2
√

K) ≤ log(1 + C/σK) for large K , hence combining with (8) we get

pk ≥ εe−C1 log1+κ (1+C/σK).

One deduces, for a new value of the constant C1,

P1 :=
K∏

k=1

pk ≥ εK exp
{−C1K log1+κ(C/σK)

}
.

Let us deal first with the case of σk given by (6). We now also need to bound

P2 := �

[
∀k > K, |fk| ≤ ε

D
√

k log k

]
= ∏

k>K

(
1 − 2H

(
ε/{Dσk

√
k log k}))

= ∏
k>K

(
1 − 2H

(
εkα/{D log k})).

Note that if

(34) ε ≥ D′K−β logK,

for some universal constant D′ > 0 to be chosen. Then, for k > K ,

εkα/{D log k} ≥ kαK−β logK

logk

D′

D
.

Hence, as long as α ≥ β , D′ can be chosen sufficiently large so that the last term is at least 1.
Then, by using (19),

H
(
εkα/{D log k}) ≤ C3K

2βk−2α(log k/ logK)2.

Then, if α > 1/2 so that the series
∑

k−2α is converging, and possibly enlarging D′ in (34)
further in order to have that the right-hand side of the last display is less than 1/4, using the
inequality log(1 − 2x) ≥ −4x for all x ∈ [0,1/4), we have

P2 ≥ exp
{ ∑

k>K

log
(
1 − 2C3K

2βk−2α(log k/ logK)2)}

≥ exp{−4C3K
2β

∑
k>K

k−2α(log k/ logK)2) ≥ exp
(−C4K · K2(β−α)),

where we have used, whenever α > 1/2, that
∑

k>K k−2α(log k)2 = O(K−2α+1 log2 K) as
K → ∞. The bound of the last display is at least exp(−C4K) assuming α ≥ β .
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Putting everything together one gets

�
[‖f − f0‖2 < ε

] ≥ εK exp
{−C1K log1+κ(C/σK) − C4K

}
≥ exp

{−K log
(
Kβ/

(
D′ logK

)) − C1K log1+κ(C/σK) − C4K
}

≥ exp
{−C5K log1+κ K

}
.

Recall the definition of εn as in (20) and the constants d1, d2 from the statement of the
Theorem. Set K = Kn = (d1/D

′)−1/βn1/(1+2β) logq n, with q = (1 − κ)/(1 + 2β) and d1 to
be chosen below. Then (34) holds for ε = d1εn and large enough n. Also,

C5K log1+κ K ≤ Cd
−1/β
1 nε2

n,

where C is a constant independent of d1, d2. For given d2 > 0, the right-hand side of the
last display is bounded from above by d2nε2

n, provided d1 is chosen sufficiently large, which
concludes the proof for σk as in (6).

Let us now turn to the case of σk given by (21). The term P1 above is bounded below by

K∏
k=1

pk ≥ εK exp
{−C1K log1+κ(C/σK)

} ≥ εK exp
{−C1K log(1+κ)(1+δ) K

}
.

On the other hand, we also have

P2 = ∏
k>K

(
1 − 2H

(
ε/{Dσk

√
k log k}))

= ∏
k>K

(
1 − 2H

(
εea log1+δ k/{D√

k logk})).
Let ε ≥ DK−β , then for large enough K , εea log1+δ k/{D√

k logk} ≥ 1 and by (19)

H
(
εea log1+δ k/{D√

k log k}) ≤ c2
(
εea log1+δ k/{D√

k log k})−2 ≤ e−a log1+δ k

so that P2 ≥ exp{−C
∑

k>K e−a log1+δ k} ≥ exp{−C′e−a log1+δ K}. The latter is bounded
from below by a constant, so the final bound obtained for the probability at stake is
exp{−C ′K log(1+κ)(1+δ) K} (for a new value of the constant C′). Let us set ε = d1εn and
K := (d1εn/D)−1/β , for εn as in (22). Then

C′K log(1+κ)(1+δ) K ≤ Cd
−1/β
1 nε2

n,

where C is independent of d1, d2. The last display is less than d2nε2
n for large d1, which

concludes the proof. �

REMARK 5 (Cauchy tails). We note that the case of H equal to the Cauchy distribution,
corresponding to H(x) ≤ c2/x for x ≥ 1, can be accommodated up to a slight variation on
the condition for the prior HT(α). Suppose in this case that α > 1 (recall that we have the
choice of α, and that in view of the theorem, the larger α is, the larger the range for which
adaptation occurs, so we can always choose α > 1 beforehand). Indeed, in this case for α > 1
one gets, for σk as in (6),

P2 ≥ exp
{ ∑

k>K

log
(
1 − 2C3

(
Kβ/kα)

(log k/ logK)
)}

≥ exp
{−C4K

1+β−α} = exp
{−C4KKβ−α}

,

and from there on the proof is identical to that of Theorem 6. A similar remark applies to the
case of σk as in (5), this time with no extra condition (the latter choice is free of α).
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Technical lemmas.

LEMMA 1. Consider the model θ ∼ π and X|θ ∼ N (θ,1/n). Suppose π is the law of
σ · ζ , for σ > 0 and ζ a real random variable with density h satisfying (7)–(8). Then for some
C,C1 > 0, it holds, for all t ∈ R, θ0 ∈ R, σ > 0,

logEθ0E
π [

et
√

n(θ−X)|X] ≤ t2/2 + C log1+κ

(
1 + |θ0| + 1/

√
n

σ

)
+ C1.

PROOF. For any t ∈ R, we have

Eθ0E
π [

et
√

n(θ−X)|X] = Eθ0

∫
exp(t

√
n(θ − X))ϕ(

√
n(X − θ))h(θ/σ)dθ∫

ϕ(
√

n(X − θ))h(θ/σ)dθ

= Eξ∼N (0,1)

∫
et(v−ξ)− (v−ξ)2

2 h(
θ0+v/

√
n

σ
) dv∫

e− (v−ξ)2
2 h(

θ0+v/
√

n
σ

) dv

.

Using that h is bounded, one gets

Eθ0E
π [

et
√

n(θ−X)|X]
�Eξ∼N (0,1)

∫
etu−u2/2 du∫

e− (v−ξ)2
2 h(

θ0+v/
√

n
σ

) dv

� et2/2Eξ∼N (0,1)

[(∫
e− (v−ξ)2

2 h

(
θ0 + v/

√
n

σ

)
dv

)−1]
.

The latter integral can be lower bounded using (7) and (8),∫
e− (v−ξ)2

2 h

(
θ0 + v/

√
n

σ

)
dv �

∫ 1

−1
e− (v−ξ)2

2 e−c1 log1+κ (1+|θ0|+1/
√

n

σ
) dv.

As a result, we have

Eθ0E
π [

et
√

n(θ−X)|X]
� et2/2+c1 log1+κ (1+|θ0|+1/

√
n

σ
)Eξ∼N (0,1)

[(∫ 1

−1
e− (v−ξ)2

2 dv

)−1]
,

and the claim follows since the expectation appearing on the right-hand side can be bounded
by a universal constant as in [19], pages 2015–2016. �

LEMMA 2. Let Y be a real random variable. Then for t > 0 and L(t) = E[exp(t |Y |)],
E

[
Y 2] ≤ t−2{

8 + 2 log2 L(t)
}
.

PROOF. Let us write E[Y 2] = t−2E[log2 exp(t |Y |)]. Using concavity of the map x →
log2(x) for x > e, one may write

E
[
log2 exp

(
t |Y |)] ≤ E

[
log2(

e + exp
(
t |Y |))] ≤ log2{

e +L(t)
}

≤ (
2 + logL(t)

)2 ≤ 8 + 2 log2 L(t),

where the last inequality uses log(e + b) ≤ 2 + log(b) valid for b ≥ 1. �

LEMMA 3. Let An(N) be the event as in (31), where either N = Nn or N = Mn as in
(29) and (32). Then for large enough n it holds

Pf0

[
Ac

n

]
� 1/

√
n.
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PROOF. First, for any k ∈ Nc and j ≥ 0, we have

Pf0

[
Ac

k,j

] ≤ P
[∣∣N (0,1)

∣∣ >

√
3 logn

(
j2 ∨ 1

)] ≤ 2
(
n
(
j2 ∨ 1

))−3/2
,

where one uses that |f0,k|≤ 1/
√

n for k ∈ Nc. From this, one deduces

Pf0

[
Ac

n

]
�

∑
j≥0

n
1

{n(j2 ∨ 1)}3/2 � 1/
√

n.
�
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SUPPLEMENTARY MATERIAL

Supplementary Material to ‘Heavy-tailed Bayesian nonparametric adaptation’ (DOI:
10.1214/24-AOS2397SUPP; .pdf). We provide the rest of the proofs of the results contained
in the main article, some technical lemmas as well as additional simulations corroborating
the theory. We also provide a discussion on the challenges involved in extending some of our
results on contraction of ρ-posteriors to standard posteriors.
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[33] IBRAGIMOV, I. A. and HAS’MINSKIĬ, R. Z. (1980). An estimate of the density of a distribution. Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 98 61–85, 161–162, 166. Studies in math-
ematical statistics, IV. MR0591862

[34] JOHNSTONE, I. M. (2019). Gaussian estimation: Sequence and wavelet models. Unpublished manuscript.
[35] KNAPIK, B. T., SZABÓ, B. T., VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2016). Bayes procedures

for adaptive inference in inverse problems for the white noise model. Probab. Theory Related Fields
164 771–813. MR3477780 https://doi.org/10.1007/s00440-015-0619-7

[36] KNAPIK, B. T., VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2011). Bayesian inverse problems with
Gaussian priors. Ann. Statist. 39 2626–2657. MR2906881 https://doi.org/10.1214/11-AOS920

[37] KOLEHMAINEN, V., LASSAS, M., NIINIMÄKI, K. and SILTANEN, S. (2012). Sparsity-promoting Bayesian
inversion. Inverse Probl. 28 025005, 28. MR2876856 https://doi.org/10.1088/0266-5611/28/2/025005

[38] L’HUILLIER, A., TRAVIS, L., CASTILLO, I. and RAY, K. (2023). Semiparametric inference using fractional
posteriors. J. Mach. Learn. Res. 24 Paper No. [389], 61. MR4720845 https://doi.org/10.4995/agt.2023.
18504

[39] LASSAS, M., SAKSMAN, E. and SILTANEN, S. (2009). Discretization-invariant Bayesian inversion and
Besov space priors. Inverse Probl. Imaging 3 87–122. MR2558305 https://doi.org/10.3934/ipi.2009.3.
87

https://mathscinet.ams.org/mathscinet-getitem?mr=2650751
https://doi.org/10.1093/biomet/asq017
https://mathscinet.ams.org/mathscinet-getitem?mr=2471287
https://doi.org/10.1214/08-EJS273
https://mathscinet.ams.org/mathscinet-getitem?mr=3262477
https://doi.org/10.1214/14-AOS1253
https://mathscinet.ams.org/mathscinet-getitem?mr=3176362
https://doi.org/10.1007/s00440-013-0493-0
https://mathscinet.ams.org/mathscinet-getitem?mr=4291462
https://doi.org/10.1214/20-aihp1132
https://mathscinet.ams.org/mathscinet-getitem?mr=3127856
https://doi.org/10.1214/13-AOS1133
https://mathscinet.ams.org/mathscinet-getitem?mr=3262473
https://doi.org/10.1214/14-AOS1246
https://mathscinet.ams.org/mathscinet-getitem?mr=4352538
https://doi.org/10.1214/21-aos2093
https://mathscinet.ams.org/mathscinet-getitem?mr=2868199
https://doi.org/10.1007/978-3-642-19989-9_1
https://mathscinet.ams.org/mathscinet-getitem?mr=2942737
https://doi.org/10.3934/ipi.2012.6.183
https://mathscinet.ams.org/mathscinet-getitem?mr=1635414
https://doi.org/10.1214/aos/1024691081
https://mathscinet.ams.org/mathscinet-getitem?mr=1323344
https://mathscinet.ams.org/mathscinet-getitem?mr=3449770
https://doi.org/10.1214/15-AOS1368
https://mathscinet.ams.org/mathscinet-getitem?mr=1790007
https://doi.org/10.1214/aos/1016218228
https://mathscinet.ams.org/mathscinet-getitem?mr=3587782
https://doi.org/10.1017/9781139029834
https://mathscinet.ams.org/mathscinet-getitem?mr=3012395
https://doi.org/10.1214/11-AOS924
https://mathscinet.ams.org/mathscinet-getitem?mr=3588285
https://doi.org/10.1017/CBO9781107337862
https://mathscinet.ams.org/mathscinet-getitem?mr=4649387
https://doi.org/10.1214/23-ejs2161
https://mathscinet.ams.org/mathscinet-getitem?mr=3396985
https://doi.org/10.1214/15-AOS1341
https://mathscinet.ams.org/mathscinet-getitem?mr=0591862
https://mathscinet.ams.org/mathscinet-getitem?mr=3477780
https://doi.org/10.1007/s00440-015-0619-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2906881
https://doi.org/10.1214/11-AOS920
https://mathscinet.ams.org/mathscinet-getitem?mr=2876856
https://doi.org/10.1088/0266-5611/28/2/025005
https://mathscinet.ams.org/mathscinet-getitem?mr=4720845
https://doi.org/10.4995/agt.2023.18504
https://mathscinet.ams.org/mathscinet-getitem?mr=2558305
https://doi.org/10.3934/ipi.2009.3.87
https://doi.org/10.1214/20-aihp1132
https://doi.org/10.1007/978-3-642-19989-9_1
https://doi.org/10.4995/agt.2023.18504
https://doi.org/10.3934/ipi.2009.3.87


HEAVY-TAILED BAYESIAN NONPARAMETRIC ADAPTATION 1459
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