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Abstract

We prove the case ρ = 1
4 of the following conjecture of Koumandos and Ruscheweyh: let sµn (z) :=∑n

k=0
(µ)k

k! zk , and for ρ ∈ (0, 1] let µ∗(ρ) be the unique solution of∫ (ρ+1)π

0
sin(t − ρπ)tµ−1dt = 0

in (0, 1]. Then we have | arg[(1− z)ρsµn (z)]| ≤ ρπ/2 for 0 < µ ≤ µ∗(ρ), n ∈ N and z in the unit disk of C
and µ∗(ρ) is the largest number with this property. For the proof of this other new results are required that
are of independent interest. For instance, we find the best possible lower bound µ0 such that the derivative

of x − Γ (x+µ)
Γ (x+1) x2−µ is completely monotonic on (0,∞) for µ0 ≤ µ < 1.

c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be the class of functions that are analytic in the unit disk D := {z : |z| < 1} of
the complex plane. For any function f ∈ A we will denote by sn( f, z) the nth partial sum
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of its power series expansion around the origin. If f (z) = (1 − z)−µ, µ > 0, we simply put
sµn (z) := sn( f, z) =

∑n
k=0

(µ)k
k! zk . Here (µ)k := µ(µ + 1) · · · (µ + k − 1) is the Pochhammer

symbol. For two functions f and g in A, we write f ≺ g and say that f is subordinate to g in
D if there is a function w in A satisfying |w(z)| ≤ |z|, z ∈ D, such that f = g ◦ w. This implies
in particular that f (0) = g(0) and f (D) ⊂ g(D). On the other hand these two conditions are
sufficient for f ≺ g if g is univalent in D (cf. [11, p. 35]).

For ρ ∈ (0, 1] let µ∗(ρ) be the unique solution in (0,1] (cf. the proof of [9, Lemma 1]) of the
equation∫ (ρ+1)π

0
sin(t − ρπ)tµ−1dt = 0. (1)

In [9] Koumandos and Ruscheweyh proposed the following conjecture.

Conjecture 1. For ρ ∈ (0, 1] the number µ∗(ρ) is equal to the maximal number µ(ρ) such that
for all n ∈ N and 0 < µ ≤ µ(ρ)

(1− z)ρsµn (z) ≺

(
1+ z

1− z

)ρ
. (2)

As shown in [9], this conjecture contains the following weaker one.

Conjecture 2. Let ρ ∈ (0, 1]. Inequality

Re
[
(1− z)2ρ−1sµn (z)

]
> 0, (3)

holds for all n ∈ N and z ∈ D when 0 < µ ≤ µ∗(ρ) and µ∗(ρ) is the largest number with this
property.

These conjectures were motivated by the results found in [10], where Koumandos and
Ruscheweyh proved the special case ρ = 1

2 of (the then yet unknown) Conjecture 2. In [9]
the case ρ = 1

2 of Conjecture 1 and ρ = 3
4 of Conjecture 2 were verified. There it is also shown

that for ρ ∈ (0, 1] we have µ(ρ) ≤ µ∗(ρ). Here we will prove the case ρ = 1
4 of Conjecture 1.

The proof of Conjecture 1 for ρ = 1
2 , given in [9] relies on a sharp trigonometric inequality

established in [5] that generalizes the celebrated Vietoris’ Theorem [14], see also [3].
The main results of this paper are the following.

Theorem 1. For ρ = 1
4 the relation (2) holds for all 0 < µ ≤ µ∗

(
1
4

)
= 0.38556655 . . . and

µ∗
(

1
4

)
is the largest number with this property.

The proof of this Theorem relies on a new sharp trigonometric inequality.

Theorem 2. For 0 < µ ≤ µ∗
(

1
4

)
we have

Un(θ) :=

n∑
k=0

(µ)k

k!
cos

[(
2k +

1
4

)
θ +

π

4

]
> 0 (4)

for n ∈ N and 0 ≤ θ < π and µ∗
(

1
4

)
is the largest number with this property.
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Theorem 1 has some interesting applications concerning starlike functions. Recall that the
class Sλ of functions starlike of order λ, λ < 1, consists of those functions f ∈ A that satisfy
f (0) = f ′(0)−1 = 0 and Re(z f ′(z)/ f (z)) > λ in D. It is easy to check that z/(1−z)µ ∈ S1−µ2

.

Recall further that for f (z) =
∑
∞

k=0 ak zk and g(z) =
∑
∞

k=0 bk zk the Hadamard product or
convolution f ∗ g is defined by ( f ∗ g)(z) :=

∑
∞

k=0 akbk zk . As in [9] we denote by Φρ,µ the
uniquely determined function f in A that satisfies

z

(1− z)µ
∗ f (z) =

z

(1− z)ρ
.

Our Theorem 1 implies the following two results.

Theorem 3. If 0 < µ ≤ µ∗
(

1
4

)
, then we have

sn( f, z)

Φ 1
4 ,µ
∗ f
≺

(
1+ z

1− z

) 1
4

for all f ∈ S1−µ/2 and n ∈ N.

Theorem 4. We have

1
z

sn( f, z) ≺

(
1+ z

1− z

) 1
2

(5)

for all f ∈ S1−µ/2 and n ∈ N if and only if 0 < µ ≤ µ∗
(

1
4

)
.

Note that (5) is equivalent to Re(sn( f, z)/z)2 > 0 for z ∈ D. Our proof of Theorem 1 will
show that for the special case f = z/(1− z)µ we even have

Re
(
sµn (z)

)2
> 0 for z ∈ D. (6)

Let Cλ
k (x) be the Gegenbauer polynomial of degree k and order λ > 0, defined by the

generating function

Gλ(z, x) := (1− 2xz + z2)−λ =

∞∑
k=0

Cλ
k (x)z

k, x ∈ [−1, 1].

It is easily seen that zGλ(·, x) ∈ S1−λ and so it is clear that Theorem 4 implies the following.

Corollary 1. The inequality∣∣∣∣∣arg
n∑

k=0

Cλ
k (x)z

k

∣∣∣∣∣ < π

4
, z ∈ D, (7)

holds for all −1 < x < 1 precisely when 0 < λ ≤ 1
2µ
∗

(
1
4

)
= 0.1927 . . ..

For our proof of Theorem 2 it will be necessary to show that

0 < ξ(x) := x −
Γ (x + µ)
Γ (x + 1)

x2−µ <
µ(1− µ)

2
, x > 0, (8)
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when µ = µ∗
(

1
4

)
= 0.385 . . .. Here Γ (x) is Euler’s gamma function. Inequality (8) was shown

in [6, Thm. 1] for 1
2 ≤ µ < 1 and then, in the special case µ = µ∗

(
3
4

)
= 0.907 . . ., applied

in the proof of the case ρ = 3
4 of Conjecture 2 in [9]. In fact, in [6, Thm. 1] a much stronger

result is shown, namely that ξ ′ is completely monotonic on (0,∞) for 1
2 ≤ µ < 1. Recall that a

function f : (0,∞) → R is called completely monotonic if it has derivatives of all orders and
satisfies

(−1)n f (n)(x) ≥ 0 for all x > 0 and n ∈ N. (9)

It is known that if a non-constant function f is completely monotonic then strict inequality
holds in (9) (cf. [4] or [13]). A characterization of completely monotonic functions is given by
Bernstein’s theorem, see [15, p. 161], which states that f is completely monotonic on (0,∞) if
and only if

f (x) =
∫
∞

0
e−xt d m(t),

where m is a non-negative measure on [0, ∞) such that the integral converges for all x > 0.
Here we will refine some techniques developed in [6] in order to obtain a best possible

extension of [6, Thm. 1(i)] that will in particular imply (8) for µ = µ∗
(

1
4

)
.

Theorem 5. The function ξ ′(x) is completely monotonic on (0,∞), when 1
3 ≤ µ < 1. The lower

bound 1/3 is best possible. In particular, the function ξ(x) is strictly increasing and concave on
(0,∞) and the inequality (8) holds for all x > 0, for this range of µ.

For an extensive bibliography regarding completely monotonic functions and inequalities
involving the gamma function we refer to the recent paper [6].

In the next section we will prove Theorem 2. In Section 3 we will show how this Theorem
implies Theorems 1, 3 and 4. In Section 4 we will present the proof of Theorem 5.

2. Proof of Theorem 2

First, note that, using summation by parts, it is easy to see that it will be enough to show (4)

for µ = µ∗
(

1
4

)
and that an argument similar to the one given in the proof of [9, Lemma 1]

shows that the upper bound µ∗
(

1
4

)
is sharp for the positivity of the trigonometric sums Un(θ)

in [0, π).
Next, recall the well-known identity

eic
n∑

k=0

eikθ
= ei(c+nθ/2) sin n+1

2 θ

sin θ
2

, n ∈ N, (10)

which holds for all θ ∈ R for which sin θ
2 does not vanish and every c ∈ R (which might even

depend on θ ).
Further, observe that if we set

∆n =
1

n1−µ

(
1

Γ (µ)
−

(µ)n

n!nµ−1

)
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for n ∈ N and 1
3 ≤ µ < 1, then, because of Theorem 5, it follows as in the proof of [9, Prop. 4]

that

n∆n <
1

Γ (µ)
µ(1− µ)

2
1

n1−µ .

A small modification of the proof of this Proposition thus yields that∣∣∣∣∣ ∞∑
k=n+1

∆ke2ikθ

∣∣∣∣∣ ≤ µ(1− µ)2 sin a

1
Γ (µ)

1

(n + 1)2−µ
(11)

for 0 < a < θ < π
2 , n ∈ N and 1

3 ≤ µ < 1. We therefore obtain the following inequality, which

for µ = µ∗
(

3
4

)
was the crucial result in the proof of [9, (3.3)] and will also play a crucial role

in the proof of (4) that is presented here.

Lemma 1. Let c(θ) be a real integrable function depending on θ ∈ R, 1
3 ≤ µ < 1, 0 < a < b

≤
π
2 and dk =

(µ)k
k! , k ∈ N0. Then for f (θ) = sin θ or f (θ) = cos θ we have for all a ≤ θ ≤ b

and n ∈ N

2µθµ−1Γ (µ)
n∑

k=0

dk f (2kθ + c(θ))

> κn(θ)− an − bn − cn + Γ (µ)

(
2q(θ)

sin µθ
2

sin θ
− r(θ)s(θ)

)
, (12)

where

an :=
b

sin b

1− µ

(2an)1−µ
1

4n
, bn :=

b2

sin2 b

1− µ

(2an)1−µ
1

3n
, cn :=

πµ(1− µ)

(2a(n + 1))2−µ
,

q(θ) := f
(µ

2
(π − θ)+ c(θ)−

π

2

)
, r(θ) := f

(µ
2
(π − 2θ)+ c(θ)

)
,

s(θ) :=
1

sin θ

[
1−

(
sin θ
θ

)1−µ
]

and

κn(θ) :=
1

sin θ

∫ (2n+1)θ

0

f (t + c(θ))

t1−µ dt.

The function s(θ) is positive and increasing on (0, π).

Proof. By [9, (3.8)] we have

n∑
k=0

dke2ikθ
= F(θ)+

1
Γ (µ)

θ

sin θ
1

(2θ)µ

∫ (2n+1)θ

0

eit

t1−µ dt

−
1

Γ (µ)
θ

sin θ

{
∞∑

k=n+1

Ak(θ)+

∞∑
k=n+1

Bk(θ)

}
+

∞∑
k=n+1

∆ke2ikθ , (13)
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with

F(θ) :=
∞∑

k=0

dke2ikθ
−

θ

sin θ
eiµ π2

(2θ)µ

and where∣∣∣∣∣ ∞∑
k=n+1

Ak(θ)

∣∣∣∣∣ < 1− µ
8

1

n2−µ ,∣∣∣∣∣ ∞∑
k=n+1

Bk(θ)

∣∣∣∣∣ < θ

sin θ
1− µ

6
1

n2−µ

for θ ∈ R by [9, Prop. 1]. As in the proof of [9, Prop. 2] it follows that

F(θ) =
θ1−µ

2µ
eiµ π2

sin θ

{(
e−iµθ

− 1
)
−

[
1−

(
sin θ
θ

)1−µ
]

e−iµθ

}
.

Hence

2µθµ−1 F(θ)eic(θ)
= 2ei(µ2 (π−θ)+c(θ)− π2 )

sin µθ
2

sin θ
− s(θ)ei(µ2 (π−2θ)+c(θ))

and thus (12) follows from (11) and the well-known inequality sin x > 2
π

x for 0 < x < π
2 . It is

straightforward to check that s(θ) is positive and increasing on (0, π). �

2.1. The cases n = 1, 2 and θ ∈ [0, π
4n+1 ] ∪ [π −

π
n+1 , π) of (4)

For the rest of Section 2 set µ := µ∗
(

1
4

)
and dk :=

(µ)k
k! , k ∈ N0. Observe that

Wn(θ) := Un (π − θ) =

n∑
k=0

dk sin
(

2k +
1
4

)
θ. (14)

We obviously have Un(0) > 0 for all n ∈ N and a summation by parts, together with (10),
shows that Un(θ) > 0 and Wn(θ) > 0 for 0 < θ ≤ π

4n+1 and 0 < θ ≤ π
n+1 , respectively.

Because of (14), this shows (4) for θ ∈ [0, π
4n+1 ] ∪ [π −

π
n+1 , π), n ∈ N.

Since µ∗( 1
4 ) <

2
5 , it follows from (14) and a summation by parts that it will be sufficient to

show that

wn(θ) :=

n∑
k=0

(
2
5

)
k

k!
sin
(

2k +
1
4

)
θ > 0 for 0 ≤ θ < π and n = 1, 2,

in order to prove (4) for n = 1, 2. A straightforward calculation gives wn(θ) = sin θ
4 pn(cos θ2 ),

n = 1, 2, where

p1(x) =
1
5

(
7− 12x − 4x2

+ 28x3
+ 4x4

)
p2(x) =

2
25

(
21− 72x − 10x2

+ 539x3
− 445x4

− 574x5
+ 448x6

+ 203x7
+ 7x8

)
.

By the method of Sturm sequences we see that pn(x) does not vanish in (0, 1) when n = 1, 2.
Clearly pn(0) > 0 and thus the cases n = 1, 2 of (4) are proven.
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2.2. The case 5π
8 ≤ θ < π − π

n+1 of (4)

Because of (14), the proof of this case will be completed if we can show that Wn(θ) > 0 for
π

n+1 < θ ≤ 3π
8 . In order to do this we will apply Lemma 1 with the parameters f (θ) = sin θ ,

c(θ) = θ
4 , a = π

n+1 and b = 3π
8 (n ≥ 3).

In this case

κn(θ) =
cos θ4
sin θ

∫ (2n+1)θ

0

sin t

t1−µ dt +
sin θ

4

sin θ

∫ (2n+1)θ

0

cos t

t1−µ dt.

It is immediately clear that S(x) :=
∫ x

0 tµ−1 sin t dt is positive for all x ∈ R and it is shown
in [10, Section 2] that the same holds for the integral C(x) :=

∫ x
0 tµ−1 cos t dt . Therefore, since

it is readily verified that cos θ4/ sin θ and − sin θ
4/ sin θ are decreasing on (0, π2 ], we obtain that

for π
n+1 < θ ≤ 3π

8

κn(θ) ≥
cos 3π

32

sin 3π
8

∫ (2n+1)θ

0

sin t

t1−µ dt +
1
4

∫ (2n+1)θ

0

cos t

t1−µ dt

≥
cos 3π

32

sin 3π
8

∫ 2π

0

sin t

t1−µ dt +
1
4

∫ 7π
4

0

cos t

t1−µ dt, (15)

where the latter inequality is obtained by minimizing S(x) and C(x) over x ≥ 7π
4 .

Furthermore, it is easy to see that, for f (θ) and c(θ) as defined above, the functions −q(θ)
and r(θ) are positive and decreasing on (0, 3π

8 ]. Since sin µθ
2 / sin θ is increasing on this interval,

we obtain that for 0 < θ ≤ 3π
8

Γ (µ)

(
2q(θ)

sin µθ
2

sin θ
− r(θ)s(θ)

)
≥ Γ (µ)

(
2q(0)

sin 3µπ
16

sin 3π
8

− r(0)s
(

3π
8

))
. (16)

Finally, for a and b as defined above, it follows that for n ≥ 3 the coefficients an , bn and cn
are smaller than

3π

8 sin 3π
8

1− µ

12
(

3π
2

)1−µ ,

(
3π

8 sin 3π
8

)2
1− µ

9
(

3π
2

)1−µ and
πµ(1− µ)

(2π)2−µ
, (17)

respectively.
Lemma 1, together with (15)–(17), now yields that for π

n+1 < θ ≤ 3π
8 and n ≥ 2

2µθµ−1Γ (µ)Wn(θ) > 0.2109 . . . .

2.3. The case π
4n+1 < θ ≤ π

3 of (4)

In order to prove this case of (4) we will apply Lemma 1 on the three intervals I1 :=

( π
4n+1 ,

π
2n+1 ], I2 := (

π
2n+1 ,

π
n+2 ] and I3 := (

π
n+2 ,

π
3 ] (n ≥ 3).

To this end, observe that with f (θ) = cos θ and c(θ) = π+θ
4 we have

κn(θ) =
sin θ

4

sin θ

∫ (2n+1)θ

0

sin
(

t − 3π
4

)
t1−µ dt −

cos θ4
sin θ

∫ (2n+1)θ

0

sin
(
t − π

4

)
t1−µ dt.
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As described in the proof of [9, Lemma 1] it follows from the definition of µ∗
(

1
4

)
and µ∗

(
3
4

)
that

∫ x
0 t1−µ sin

(
t − 3π

4

)
dt and

∫ x
0 t1−µ sin

(
t − π

4

)
dt are non-positive for all x > 0. As

noted before, cos θ4/ sin θ and − sin θ
4/ sin θ are decreasing on (0, π2 ) and thus we obtain that

for 0 < θ ≤ b ≤ π
2

κn(θ) ≥
1

sin b

∫ (2n+1)θ

0

cos
(
t + b+π

4

)
t1−µ dt.

For n ≥ 3 this means that in I1

κn(θ) ≥
1

sin π
7

∫ (2n+1)θ

0

cos
(

t + 2π
7

)
t1−µ dt ≥

1
sin π

7

∫ π

0

cos
(

t + 2π
7

)
t1−µ dt, (18)

where the latter inequality is obtained by minimizing the integral over 0 < (2n + 1)θ ≤ π .
Likewise, by minimizing the respective integrals over π < (2n + 1)θ and 7π

5 < (2n + 1)θ , we
find that for n ≥ 3

κn(θ) ≥
1

sin π
5

∫ 6π
5

0

cos
(

t + 3π
10

)
t1−µ dt and κn(θ) ≥

1
sin π

3

∫ 7π
5

0

cos
(
t + π

3

)
t1−µ dt (19)

in I2 and I3, respectively.
Furthermore, it is straightforward to check that with f (θ) and c(θ) as defined above the

functions q(θ) and r(θ) are positive and increasing on (0, π2 ). Therefore, using the inequality

2 sin µθ
2 / sin θ ≥ µ (0 < θ < π ), we get that for 0 < θ ≤ b ≤ π

2

2q(θ)
sin µθ

2

sin θ
− r(θ)s(θ) ≥ µq(0)− r(b)s(b). (20)

Finally, if a = π
4n+1 and b = π

2n+1 , then, for n ≥ 3, we have b ≤ π
7 , 2an ≥ 6π

13 and
2a(n + 1) ≥ π

2 and by Lemma 1 this, together with (18) and (20), shows that

2µθµ−1Γ (µ)Un(θ) ≥
1

sin π
7

∫ π

0

cos
(

t + 2π
7

)
t1−µ dt

−
π

7 sin π
7

1− µ

12
(

6π
13

)1−µ −

(
π

7 sin π
7

)2 1− µ

9
(

6π
13

)1−µ −
πµ(1− µ)(

π
2

)2−µ
+Γ (µ)

(
µq(0)− r

(π
7

)
s
(π

7

))
= 0.0214 . . .

for θ ∈ I1 and n ≥ 3.
Likewise, if a = π

2n+1 , b = π
n+2 and n ≥ 3, then b ≤ π

5 , 2an ≥ 6π
7 and 2a(n + 1) ≥ π , and

if a = π
n+2 , b = π

3 and n ≥ 3, then 2an ≥ 6π
5 and 2a(n + 1) ≥ 8π

5 . Similar reasoning as before
now shows that, for n ≥ 3, 2µθµ−1Γ (µ)Un(θ) is larger than 0.0157 . . . and 0.0670 . . . in I2 and
I3, respectively.
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2.4. The case π
3 < θ < 5π

8 of (4)

In order to prove this case of (4), recall the well-known inequality, see [3, Lemma 3],∣∣∣∣∣ ∞∑
k=n

akei2kθ

∣∣∣∣∣ ≤ an

sin θ
, (0 < θ < π)

which holds for every positive and decreasing sequence (ak)k∈N0 . Therefore, since

Un(θ)→
cos 1

4 ((1− 4µ)θ + (1+ 2µ)π)

(2 sin θ)µ
(0 < θ < π)

as n→∞ and since the sequence (dk)k is decreasing, we obtain for n ≥ 3 and 0 < θ < π

Un(θ) ≥
cos 1

4 ((1− 4µ)θ + (1+ 2µ)π)

(2 sin θ)µ
−

d4

sin θ
.

It is readily verified that the function cos 1
4 ((1 − 4µ)θ + (1 + 2µ)π) is positive and increasing

on (π3 ,
5π
8 ) and so it follows from the above that for n ≥ 3 and π

3 < θ < 5π
8

Un(θ) ≥
cos π6 (2+ µ)

2µ
−

d4

sin π
3
= 0.0344 . . . .

3. Proof of Theorems 1, 3 and 4

Setting h(z) = (1+ z)/(1− z), the function hρ is univalent in D for all 0 < ρ ≤ 2. Therefore,
if (2) holds for some µ ∈ (0, 1] and ρ ∈ (0, 1], then the principle of subordination yields that
sµn ≺ h2ρ . Since for 0 < ρ ≤ 1

2

| arg h2ρ
| < ρπ and | arg(1− z)2ρ−1

| ≤
π

2
− ρπ in D,

this, in turn, implies the validity of (3) for the same µ and ρ if 0 < ρ ≤ 1
2 . Since (1 − z)−µ ∈

S1−µ/2 and since it is shown in [9] that (3) cannot hold for µ > µ∗(ρ), it thus follows that in

Theorems 1 and 4 the upper bound µ∗
(

1
4

)
is sharp.

By an application of the convolution theory for starlike functions (see, for instance, [12, p.
55]) it has been shown in [9] that the validity of Conjecture 1 for a ρ ∈ (0, 1] implies that for all
f ∈ S1−µ/2 with 0 < µ ≤ µ∗ (ρ) and all n ∈ N

sn( f, z)

Φρ,µ ∗ f
≺

(
1+ z

1− z

)ρ
and that this, in turn, implies that for all f ∈ S1−µ/2 with 0 < µ ≤ µ∗ (ρ) and all n ∈ N

1
z

sn( f, z) ≺

(
1+ z

1− z

)2ρ

.

Hence, Theorems 3 and 4 follow immediately from Theorem 1.
Now, in order to complete the proof of Theorem 1, it only remains to be shown that (2) holds

for ρ = 1
4 , 0 < µ ≤ µ∗

(
1
4

)
and n ∈ N and because of the minimum principle for harmonic
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functions this will be done once we have proven that

Re
[
(1− e2iθ )

(
sµn (e

2iθ )
)4
]
> 0 (21)

for 0 < µ ≤ µ∗
(

1
4

)
, n ∈ N and 0 < θ < π .

To this end, note first that

Tn(θ) :=

n∑
k=0

(µ)k

k!
cos

(
2k +

1
4

)
θ > 0 for 0 ≤ θ < 2π, 0 < µ ≤ µ∗

(
1
4

)
(22)

and n ∈ N. For 0 ≤ θ < π this is a consequence of [5, (6.4)], while for π ≤ θ < 2π it follows
from the fact that Tn(2π − θ) = Un(π − θ) > 0 (this latter relation also shows the sharpness of

the bound µ∗
(

1
4

)
for the positivity of the Tn in [0, 2π)). We also have

Vn(θ) :=

n∑
k=0

(µ)k

k!
cos

(
2kθ +

π

4

)
> 0 for θ ∈ R, 0 < µ ≤ µ∗

(
1
4

)
(23)

and n ∈ N. Applying elementary trigonometric identities (e.t.i.) we get

Vn(θ) = cos
θ

4
Un(θ)+ sin

θ

4
Tn(π − θ),

and thus (23) follows from the positivity of the Un and Tn in [0, π). The sharpness of µ∗
(

1
4

)
for

the positivity of the Vn in R can be seen by an asymptotic analysis similar to the one presented
in the proof of [9, Lemma 1].

Now, in order to prove (21), set sµn (e2iθ ) =: Cn(θ)+ iSn(θ), i.e.

Cn(θ) :=

n∑
k=0

(µ)k

k!
cos 2kθ and Sn(θ) :=

n∑
k=0

(µ)k

k!
sin 2kθ,

for 0 < µ ≤ 1, θ ∈ R and n ∈ N. Then e.t.i. and (23) show that

Xn(θ) := Cn(θ)
2
− Sn(θ)

2
= (Cn(θ)+ Sn(θ))(Cn(θ)− Sn(θ))

= 2 Vn(θ) · Vn(π − θ) > 0 (24)

for θ ∈ R, 0 < µ ≤ µ∗
(

1
4

)
and n ∈ N (in particular, since Re(sµn (e2iθ ))2 = C2

n(θ)− S2
n(θ), we

see that (6) holds). Setting Zn(θ) := Cn(θ)Sn(θ)/Xn(θ) we find that the left-hand side of (21) is
equal to

2 sin θ X2
n(θ) p(Zn(θ)), where p(x) := −4x2 sin θ + 4x cos θ + sin θ.

For 0 < θ < π we have p(x) > 0 if, and only if,

−1+ cos θ < 2x sin θ < 1+ cos θ,

and thus, since sin(π − θ)Zn(π − θ) = − sin θ Zn(θ) and cos(π − θ) = − cos θ , it follows that
(21) holds if, and only if,

2 sin θ Zn(θ) < 1+ cos θ for 0 < θ < π. (25)



1078 S. Koumandos, M. Lamprecht / Journal of Approximation Theory 162 (2010) 1068–1084

Because of (24) the inequality (25) is equivalent to

0 < (1+ cos θ)(C2
n(θ)− S2

n(θ))− 2 sin θ Cn(θ)Sn(θ)

= Re
[
(1+ eiθ )

(
sµn (e

2iθ )
)2
]
= 2 cos

θ

2
Re
[(

eiθ/4sµn (e
2iθ )

)2
]

for 0 < θ < π . E.t.i. show that

Re
[(

eiθ/4sµn (e
2iθ )

)2
]
= 2 Un(θ) · Tn(π − θ)

for 0 < θ < π . By Theorem 2 and (22) the product Un(θ)Tn(π − θ) is positive for 0 < θ < π ,

0 < µ ≤ µ∗
(

1
4

)
and n ∈ N. Hence, (21) holds for the required set of parameters. The proof of

Theorem 1 is thus complete.

4. Proof of Theorem 5

We will first show that ξ ′(x) cannot be completely monotonic on (0,∞) when 0 < µ < 1/3.
To see this, we observe that

ξ ′(x) = 1−
Γ (x + µ)
Γ (x + 1)

x1−µ
(

x
(
ψ(x + µ)− ψ(x + 1)

)
+ 2− µ

)
, (26)

where ψ(x) := Γ ′(x)/Γ (x), and therefore ξ ′(0) = 1. On the other hand, using the asymptotic
formulae

Γ (x + µ)
Γ (x + 1)

x1−µ
= 1−

µ(1− µ)
2 x

+
µ(1− µ)(2− µ)(3µ− 1)

24 x2 + O

(
1

x3

)
, (27)

ψ(x + µ)− ψ(x + 1) =
µ− 1

x
+
µ(1− µ)

2 x2 +
µ(1− µ)(1− 2µ)

6 x3 + O

(
1

x4

)
, (28)

as x →∞ (cf. [1, p. 257]; the second formula follows by considering d
dx log(Γ (x+µ)/Γ (x+1))

and applying the first one), we obtain

lim
x→∞

(
x2 ξ ′(x)

)
=
µ(1− µ)(2− µ)(3µ− 1)

24
, (29)

which is negative when 0 < µ < 1/3. Thus, for this range of µ, the function ξ ′(x) changes sign
on (0,∞).

Now, for 0 < α < 1, consider the function

f (x) :=
eα x
− 1

ex − 1
.

The convexity of this function on (0,∞) was crucial in the proof of [6, Thm. 1(i)]. In fact, it is
proved in [6] that the function f (x) is strictly decreasing on (0,∞)when 0 < α < 1. For those α
it is convex on (0, ∞) if and only if 0 < α ≤ 1/2. See [6, Lemma 1, (1)] (to see that the condition
0 < α ≤ 1/2 is necessary, observe that, by (30) and (33) below, f ′′(0) = α(α − 1)(2α − 1)).
However, in the case 1/2 < α ≤ 2/3 we have the following:

Lemma 2. Suppose that 1/2 < α ≤ 2/3. Then
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(i) f ′′(x) > 0, for x ∈ [1,∞).
(ii) f ′′′(x) > 0, for x ∈ [0, 1].

Proof. We have

f ′′(x) =
1

(ex − 1)3
[
(α − 1)2 e(α+2)x

+ (−2α2
+ 2α + 1)e(α+1)x

+ α2eαx
− e2x

− ex].
Thus

f ′′(x) =

(
x

ex − 1

)3 ∞∑
n=3

Pn(α)

n!
xn−3, (30)

where

Pn(α) := (α − 1)2 (α + 2)n + (−2α2
+ 2α + 1) (α + 1)n + αn+2

− 2n
− 1, n ≥ 3.

(cf. [6, (2.1)]). We first prove that

Pn(α) > 0, for all n ≥ 5 when 1/2 ≤ α ≤ 2/3. (31)

Clearly,

Pn(α) > Qn(α),

where

Qn(α) := (α − 1)2 (α + 2)n − 2n .

We shall show that

Qn(α) > 0, for all n ≥ 8, 1/2 ≤ α ≤ 2/3. (32)

First,

Qn(α) ≥ (α − 1)2
(

5
2

)n

− 2n
≥

1
9

(
5
2

)n

− 2n > 0, n ≥ 10.

On the other hand, since

Q′n(α) = (α + 2)n−1 (α − 1)
(
(n + 2)α − n + 4

)
,

Q′n(α) < 0, for 5 ≤ n ≤ 9. Since Q8(2/3) = 28.1236 . . . and Q9(2/3) = 245.6630 . . . , the
proof of (32) is complete. In order to prove (31), first observe that P7(α) > Q7(α)+q(α), where
q(α) := (−2α2

+ 2α + 1) (α + 1)7 − 1. It is easy to see that q(α) is an increasing function of α
and therefore P7(α) > Q7(2/3)+ q(1/2) = 3.1752 . . . . Also,

P5(α) = α(α − 1) (12α3
+ 27α2

+ 7α − 23),

P6(α) = α(α − 1) (20α4
+ 68α3

+ 73α2
− 17α − 72).

A straightforward computation shows that P5(α) > 0 and P6(α) > 0 for 1/2 ≤ α ≤ 2/3 and
therefore the proof of (31) is complete.

Note that

P3(α) = α (α − 1) (2α − 1) < 0, 1/2 < α ≤ 2/3, (33)

while the polynomial

P4(α) = 6α (α − 1) (α2
+ α − 1) (34)
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has a unique root α0 :=
−1+
√

5
2 = 0.618 . . . in the interval (1/2, 2/3) so that P4(α) > 0 for

1/2 < α < α0 and P4(α) < 0 for α0 < α < 2/3.
In order to prove part (i) of the lemma we use (30) and set

S(x) :=
∞∑

n=3

Pn(α)

n!
xn−3.

It follows from (31) that S′′(x) > 0 for x > 0 and 1/2 ≤ α ≤ 2/3. Therefore S′(x) is a strictly
increasing function of x in [1, ∞) and hence

S′(x) ≥ S′(1) =
∞∑

n=4

(n − 3)
Pn(α)

n!
>

P4(α)

4!
+ 2

P5(α)

5!

=
1
30
α(α − 1)(6α3

+ 21α2
+ 11α − 19) > 0,

for 1/2 ≤ α ≤ 2/3. S(x) is thus strictly increasing on [1,∞) and consequently

S(x) ≥ S(1) =
∞∑

n=3

Pn(α)

n!
>

7∑
k=3

Pk(α)

k!

=
1

5040
α (α − 1) (30α5

+ 275α4
+ 1220α3

+ 3040α2
+ 2977α − 3771) > 0,

for 1/2 ≤ α ≤ 2/3. This in combination with (30) completes the proof of part (i).
We now turn to the proof of (ii). Differentiating (30) we see that inequality f ′′′(x) > 0 is

equivalent to

3
ρ′(x)

ρ(x)
S(x)+ S′(x) > 0, (35)

where S(x) as above and

ρ(x) =
x

ex − 1
.

Inequality (35) is true for x = 0, because it reduces to

P4(α)− 6P3(α) = 6α2 (α − 1)2 > 0.

Assume that 0 < x ≤ 1. Writing

ρ′(x)

ρ(x)
=

1
x

(
1−

x

ex − 1

)
− 1

and using the known inequalities

1−
x

2
<

x

ex − 1
< 1−

x

2
+

x2

12

(see [7] for a more general result), we get

−
1
2
−

x

12
<
ρ′(x)

ρ(x)
< −

1
2
. (36)
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Let 1/2 ≤ α ≤ α0, where α0 =
−1+
√

5
2 = 0.618 . . . is the unique root in the interval

(1/2, 2/3) of the polynomial P4(α). Since in this case P4(α) ≥ 0, P3(α) ≤ 0, we obtain, using
(31) and (36),

3
ρ′(x)

ρ(x)
S(x)+ S′(x) > −

(
3x

2
+

x2

4

) ∞∑
k=4

Pk(α)

k!
xk−4
+

∞∑
k=4

Pk(α)

k!
(k − 3) xk−4. (37)

When 0 < x ≤ x0 := −3+
√

13 = 0.6055 . . . we have 3x
2 +

x2

4 ≤ 1. Hence, from (37) we get

3
ρ′(x)

ρ(x)
S(x)+ S′(x) >

∞∑
k=5

Pk(α)

k!
(k − 4) xk−4 > 0, (38)

and the last inequality is obtained using once more (31). When x0 < x ≤ 1 we obviously have
3x
2 +

x2

4 ≤
7
4 and thus, because of (37) and (31), we get

3
ρ′(x)

ρ(x)
S(x)+ S′(x) > −

3
4

P4(α)

4!
+

∞∑
k=5

(
k −

19
4

)
Pk(α)

k!
xk−4

> −
3
4

P4(α)

4!
+

1
4

P5(α)

5!
x +

5
4

P6(α)

6!
x2

> −
3
4

P4(α)

4!
+

1
4

P5(α)

5!
x0 +

5
4

P6(α)

6!
x2

0

=
1

1440
(11− 3

√
13) α(1− α)

(
−100α4

− (394+ 18
√

13)α3

+ (256+ 162
√

13)α2
+ (796+ 192

√
13)α − 279− 168

√
13
)
.

Since it is straightforward to check that the last expression is positive for 1/2 ≤ α ≤ α0, this and
(38) establish (35) in the case where 1/2 ≤ α ≤ α0.

Next, suppose that α0 < α ≤ 2/3. In this case P4(α) < 0. We have

3
ρ′(x)

ρ(x)
S(x)+ S′(x) = 3

ρ′(x)

ρ(x)

( P3(α)

3!
+

P4(α)

4!
x
)
+

P4(α)

4!

+ 3
ρ′(x)

ρ(x)

∞∑
k=5

Pk(α)

k!
xk−3
+

∞∑
k=5

Pk(α)

k!
(k − 3) xk−4. (39)

Since P3(α) < 0, using the second inequality of (36) we obtain

3
ρ′(x)

ρ(x)

(
P3(α)

3!
+

P4(α)

4!
x

)
+

P4(α)

4!
> −

P3(α)

4
+

P4(α)

24
=

1
4
α2 (1− α)2 > 0. (40)

On the other hand, using the first inequality of (36) together with (31), we obtain

3
ρ′(x)

ρ(x)

∞∑
k=5

Pk(α)

k!
xk−3
+

∞∑
k=5

Pk(α)

k!
(k − 3) xk−4 >

∞∑
k=5

(
k −

19
4

)
Pk(α)

k!
xk−4 > 0. (41)

Combining (40) with (41) we deduce that the expression in (39) is positive and this establishes
(35) in the case where α0 < α ≤ 2/3.

The proof of Lemma 2 is complete. �
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We can now give a proof of Theorem 5.
First observe that

ξ ′′(x) = −
Γ (x + µ)
Γ (x + 1)

x2−µ Φ(x), (42)

where

Φ(x) :=
(
ψ(x + µ)− ψ(x + 1)+

2− µ
x

)2

+

(
ψ(x + µ)− ψ(x + 1)+

2− µ
x

)′
.

Then, as in the proof of [6, Thm. 1] we find that

Φ(x) =
∫
∞

0
e−xu F(u) du, (43)

where, for u > 0,

F(u) :=
∫ u

0
σ(u − v) σ (v) dv − u σ(u)

and

σ(u) := 2− µ− φ(u)

with

φ(u) :=
e(1−µ)u − 1

eu − 1
, φ(0) = 1− µ.

Then

F ′(u) =
∫ u

0
σ ′(u − v) σ (v) dv − u σ ′(u),

and

F ′′(u) = uφ′′(u)+
∫ u

0
φ′(u − v)φ′(v) dv. (44)

It is shown in [6, Lemma 1] that when 0 < µ < 1 we have φ′(u) < 0 for u ∈ [0, ∞). In addition,
when 1/2 ≤ µ < 1 we have φ′′(u) ≥ 0 for u ∈ [0, ∞). In view of (44), the combination of
these results implies that F ′′(u) > 0 for u > 0.

Using Lemma 2, we shall prove that for 1/3 ≤ µ < 1/2, we also have F ′′(u) > 0 for u > 0,
although, for this range of µ the function φ′′(u) assumes negative values. In fact,

φ′′(0) =
1
6
µ (1− µ) (2µ− 1) < 0.

Note also that

φ′(0) = −
1
2
µ (1− µ) < 0.

It follows from Lemma 2, that when 1/3 ≤ µ < 1/2 the function φ′′(u) has a unique root in the
interval (0, 1) which we denote by ωµ. Clearly, φ′′(u) ≥ 0 for u ∈ [ωµ, ∞) and therefore, by
(44), F ′′(u) > 0 for u ∈ [ωµ, ∞).
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Suppose that 0 < u < ωµ. Consider the function of v

δ(v) := φ′(u − v) φ′(v), 0 ≤ v ≤ u < ωµ < 1.

Differentiating with respect to v we get

δ′(v) = −φ′′(u − v) φ′(v)+ φ′(u − v) φ′′(v)

and also

δ′′(v) = φ′′′(u − v) φ′(v)− 2φ′′(u − v) φ′′(v)+ φ′(u − v) φ′′′(v).

Lemma 2 ensures that δ′′(v) < 0 when v ∈ [0, u] with 0 < u < ωµ. Therefore, the function δ(v)
is concave when v ∈ [0, u] and thus we obtain the estimate

δ(v) ≥ φ′(0) φ′(u), v ∈ [0, u]. (45)

It is perhaps of interest to note that the function δ(v) has a graph that is symmetric with respect
to line v = u/2 and that δ(v) is increasing on [0, u/2] and decreasing on [u/2, u] and therefore
the estimate (45) can also be obtained in this way.

It follows from (44) and (45) that

F ′′(u) ≥ u
[
φ′′(u)+ φ′(0) φ′(u)

]
, (46)

for 0 < u < ωµ. From Lemma 2 we deduce that φ′′′(u) + φ′(0) φ′′(u) > 0 for u ∈ (0, ωµ).
Therefore φ′′(u)+ φ′(0) φ′(u) increases in this interval, and hence

φ′′(u)+ φ′(0)φ′(u) ≥ φ′′(0)+ φ′(0)2 =
1

12
µ (1− µ) (2− µ) (3µ− 1) ≥ 0, (47)

for 1/3 ≤ µ < 1.
It follows from (46) and (47) that F ′′(u) > 0 for 0 < u < ωµ and thus this inequality holds

for all u > 0. Hence the function F(u) satisfies the following: F ′′(u) > 0, F ′(u) > 0 = F ′(0)
and F(u) > F(0) = 0. Taking into consideration (43), it follows from [6, Lemma 2] (see
also [8, Thm. 1.3] for a more general result), that the function x2 Φ(x) is completely monotonic
on (0, ∞).

Because of (42) we have

−ξ ′′(x) =
Γ (x + µ)
Γ (x + 1)

1
xµ

x2Φ(x).

It is straightforward to check that x−µ is completely monotonic on (0, ∞) for µ > 0; using
Bernstein’s Theorem (cf. Section 1) and the well-known formula (cf. [2, p. 615])

Γ (x + a)

Γ (x + b)
=

1
Γ (b − a)

∫
∞

0
e−xu e−au (1− e−u)b−a−1 du, b > a,

we see that also Γ (x + µ)/Γ (x + 1) is completely monotonic. Since it follows readily from the
Leibniz product rule that the product of two completely monotonic functions is again completely
monotonic, we have thus shown that the function −ξ ′′(x) is completely monotonic on (0,∞).
Finally, from (29) we get limx→∞ ξ

′(x) = 0, and thus ξ ′(x) > 0 for x > 0. The relation (9)
shows that the function ξ ′(x) is completely monotonic on (0,∞).

Thus the function ξ(x) is strictly increasing and concave on (0,∞) and, by (27),

lim
x→∞

ξ(x) =
µ (1− µ)

2
,
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which gives the second inequality of (8).
This completes the proof of Theorem 5.
As a consequence of the above we also have the following remarkable result.

Corollary 2. Let

Φ(x) :=
(
ψ(x + µ)− ψ(x + 1)+

2− µ
x

)2

+

(
ψ(x + µ)− ψ(x + 1)+

2− µ
x

)′
.

The function x2 Φ(x) is completely monotonic on (0, ∞) if and only if 1/3 ≤ µ < 1.

Proof. The proof is contained in the proof of Theorem 5. In order to see that the result is sharp
with respect to µ, observe that by (28),

lim
x→∞

x4 Φ(x) =
1

12
µ (1− µ) (2− µ) (3µ− 1) < 0

for 0 < µ < 1/3, while a direct calculation yields

lim
x→0+

x2 Φ(x) = (1− µ) (2− µ) > 0

for 0 < µ < 1. Therefore the function x2 Φ(x) changes sign on (0,∞) when 0 < µ < 1/3. �
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[14] L. Vietoris, Über das Vorzeichen gewisser trigonometrischer summen, S.-B. Öster. Akad. Wiss. 167 (1958)
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