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Abstract

We prove the case p = % of the following conjecture of Koumandos and Ruscheweyh: let s} (z) =

ZZ:O %zk, and for p € (0, 1] let u*(p) be the unique solution of
(p+D)m 1
/ sin(t — pm)t*~'dt =0
0

in (0, 1]. Then we have | arg[(] — z)ps,lf(z)]| < pr/2for0 < u < u*(p), n € Nand z in the unit disk of C
and u*(p) is the largest number with this property. For the proof of this other new results are required that
are of independent interest. For instance, we find the best possible lower bound ¢ such that the derivative
of x — %xz_“ is completely monotonic on (0, co) for ug < u < 1.
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1. Introduction

Let A be the class of functions that are analytic in the unit disk D = {z : |z] < 1} of
the complex plane. For any function f € A we will denote by s,(f, z) the nth partial sum
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of its power series expansion around the origin. If f(z) = (1 — 2)™*, © > 0, we simply put
sh(2) = su(fo2) = Yo (’,ﬁ—?kzk. Here (u)r == u(u + 1) --- (u + k — 1) is the Pochhammer
symbol. For two functions f and g in A, we write f < g and say that f is subordinate to g in
D if there is a function w in A satisfying |w(z)| < |z|, z € D, such that f = g o w. This implies
in particular that f(0) = g(0) and f(D) C g(D). On the other hand these two conditions are
sufficient for f < g if g is univalent in D (cf. [11, p. 35]).

For p € (0, 1] let u*(p) be the unique solution in (0,1] (cf. the proof of [9, Lemma 1]) of the
equation

(p+D)m
/ sin(r — p)t*~1dr = 0. (1)
0
In [9] Koumandos and Ruscheweyh proposed the following conjecture.

Conjecture 1. For p € (0, 1] the number u*(p) is equal to the maximal number p(p) such that
foralln e Nand 0 < u < u(p)

o
(1 - 2)7s5(2) < <1+Z> . ®)

-z
As shown in [9], this conjecture contains the following weaker one.
Conjecture 2. Let p € (0, 1]. Inequality
Re [(1 . z)zp_ls,‘f(z)] >0, 3)

holds for alln € Nand z € D when 0 < u < u*(p) and w*(p) is the largest number with this
property.

These conjectures were motivated by the results found in [10], where Koumandos and

Ruscheweyh proved the special case p = % of (the then yet unknown) Conjecture 2. In [9]

the case p = % of Conjecture 1 and p = % of Conjecture 2 were verified. There it is also shown
that for p € (0, 1] we have u(p) < u*(p). Here we will prove the case p = 4—1‘ of Conjecture 1.

The proof of Conjecture 1 for p = %, given in [9] relies on a sharp trigonometric inequality
established in [5] that generalizes the celebrated Vietoris’ Theorem [14], see also [3].
The main results of this paper are the following.

Theorem 1. For p = § the relation (2) holds for all 0 < p < p* (}T) = 0.38556655 ... and
w* (%) is the largest number with this property.
The proof of this Theorem relies on a new sharp trigonometric inequality.
Theorem 2. For 0 < p < u* (%) we have
(Wi 1 7
U,0) = — cos |:<2k + —) 0+ —i| >0 4)
= K 4 4

forneNand0 <6 < and pu* <3—1> is the largest number with this property.
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Theorem 1 has some interesting applications concerning starlike functions. Recall that the
class Sy of functions starlike of order A, A < 1, consists of those functions f € A that satisfy
f(©0) = f'(0)—1=0andRe(zf'(z)/f (z)) > AinD. Itis easy to check that z/(1 —z)* € 81_%.

Recall further that for f(z) = > 3o, axz* and g(z) = Y jo, bxz* the Hadamard product or
convolution f * g is defined by (f * g)(z) := Y e akbkz. As in [9] we denote by &, , the
uniquely determined function f in A that satisfies

Z Z
A—or &=

Our Theorem 1 implies the following two results.

Theorem 3. If 0 < u < u* (%) then we have

1
sn(f, 2) . 14+2z\*%
b1 xf 1—z

Fol

forall f € S;_ypandn € N.

Theorem 4. We have

1 1 +2)\?
“an(f.0) < ( “) ®)

1—z

forall f € Si_ypandn e Nifand only if 0 < p < p* (}T)

Note that (5) is equivalent to Re(s, (f, z) /z)2 > 0 for z € . Our proof of Theorem 1 will
show that for the special case f = z/(1 — z)* we even have

Re (s/(2))> >0 forz eD. ©6)

Let C,i‘(x) be the Gegenbauer polynomial of degree k and order A > O, defined by the
generating function
o
Grz.x)=(1-2z+2) " =) Crw)k, xel-11]
k=0

It is easily seen that zG, (-, x) € Si—, and so it is clear that Theorem 4 implies the following.

Corollary 1. The inequality

/4
<Z, zeD, )

n
arg Z C,f (x)zk
k=0

holds for all —1 < x < 1 precisely when 0 < A < %M* (%) =0.1927....
For our proof of Theorem 2 it will be necessary to show that

Fx+w o, wld—p

0<§(X)1=X—F(x+1)x < R

> 0, ®)
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when u = p* (%) = 0.385.... Here I'(x) is Euler’s gamma function. Inequality (8) was shown
in [6, Thm. 1] for % < p < 1 and then, in the special case u = p* (?—1) = 0.907..., applied

in the proof of the case p = % of Conjecture 2 in [9]. In fact, in [6, Thm. 1] a much stronger
result is shown, namely that &’ is completely monotonic on (0, co) for % < u < 1. Recall that a
function f : (0, 00) — R is called completely monotonic if it has derivatives of all orders and
satisfies

(=" f™(x) >0 forallx >0andn e N. 9)

It is known that if a non-constant function f is completely monotonic then strict inequality
holds in (9) (cf. [4] or [13]). A characterization of completely monotonic functions is given by
Bernstein’s theorem, see [15, p. 161], which states that f is completely monotonic on (0, co) if
and only if

fx) = /oo e " dm(r),
0

where m is a non-negative measure on [0, co) such that the integral converges for all x > 0.
Here we will refine some techniques developed in [6] in order to obtain a best possible

. . s . . 1
extension of [6, Thm. 1(i)] that will in particular imply (8) for u = p* (Z)'

Theorem 5. The function &' (x) is completely monotonic on (0, 00), when % < u < 1. The lower
bound 1/3 is best possible. In particular, the function & (x) is strictly increasing and concave on
(0, 00) and the inequality (8) holds for all x > 0, for this range of L.

For an extensive bibliography regarding completely monotonic functions and inequalities
involving the gamma function we refer to the recent paper [6].

In the next section we will prove Theorem 2. In Section 3 we will show how this Theorem
implies Theorems 1, 3 and 4. In Section 4 we will present the proof of Theorem 5.

2. Proof of Theorem 2

First, note that, using summation by parts, it is easy to see that it will be enough to show (4)

for p = p* (}1) and that an argument similar to the one given in the proof of [9, Lemma 1]

shows that the upper bound p* (4—1‘) is sharp for the positivity of the trigonometric sums U, (6)
in [0, ).
Next, recall the well-known identity

n soon+l
. ) ) sin 56
elC E elk9 — el(C+n9/2) . 29 , ne N, (10)
k=0 sin 5

which holds for all & € R for which sin % does not vanish and every ¢ € R (which might even
depend on 6).
Further, observe that if we set

P (1 _(u)n>
nl=t \ I'(w) nlnr-1
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for n € N and % < u < 1, then, because of Theorem 5, it follows as in the proof of [9, Prop. 4]
that

I p(d—p) 1

n4, < .
F'(wy 2 nl=#

A small modification of the proof of this Proposition thus yields that

_pd-w 1 1

i AkGZike
WSt ~ 2sina I'(p) (n+ 1)2-#

(11

for0 <a <6 < %,neNand % < p < 1. We therefore obtain the following inequality, which

for u = p* (%) was the crucial result in the proof of [9, (3.3)] and will also play a crucial role
in the proof of (4) that is presented here.

Lemma 1. Let c(9) be a real integrable function depending on 6 € R, % <u<l,0<a<b

< % and dy = (‘,i# k € Ng. Then for f(0) = sinf or f(0) = cosO we have foralla <60 <b
andn € N

21491 () Z di f (2k6 + c(0))

k=0
sin “70
> kn(0) —an — by —cn + I'(1) | 29(0) o r@)s@©) |, (12)
where
b 1l—p 1 pr 1l—p 1 au(l —p)
=——-— by, = — 5> Cn == )
sinb (2an)!~* 4n sin2 b Qan)!=# 3n 2a(n + 1))2—n

(P _z (M

¢® =f(Sa=-0+c@-3). 1@ =r(5r-20+c®),
oo L (e

o=z 1= ()

1 2n+1)0 f([+C(9))
kn(0) = m[) Tdt

and

The function s(0) is positive and increasing on (0, ).

Proof. By [9, (3.8)] we have

n . 1 0 1 2n+1)0 it
E deZIke =F@O)+ ——— / le—dt
pr I'(n) sind 20)* Jo ti—r

_Li 3 - S 2ik0
T(u) sind LZ AO)+ Y Bk(9>}+ Y AP, (13)

=n+1 k=n+1 k=n+1
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with
F(9) = idkeﬁke _ 0
’ = sin@ (20)*
and where
1
Z Ar®)] < et
k=n+1
o 1-— 1
Y B®)| <
Pl sinf 6 peH

for 0 € R by [9, Prop. 1]. As in the proof of [9, Prop. 2] it follows that

pl—n in% ) ind I—p .
F6) = d (e_"w—l)— - (2 e |
21 sinf 0

Hence

6
T sin 5~

HgH— 1F(9)ew(0) _ 261( (T=0)+c(0)—7 _S(Q)ei(%(ﬂ*29)+c(9))

sin 0
and thus (12) follows from (11) and the well-known inequality sinx > %x for0 < x < Z.1Itis
straightforward to check that s() is positive and increasing on (0, 7). [

2.1. The casesn =1, 2 and 0 € [0, 4)1L+1] Ulr — n”?,n) of (4)

For the rest of Section 2 set u = u* ( ) and dj = k?k , k € Np. Observe that

Wa(0) = Uy (1 —0) =Y _disin <2k+%) 6. (14)

k=0

We obviously have U, (0) > O for all n € N and a summation by parts, together with (10),
shows that U, (#) > 0 and W,(0) > Ofor0 < 0 < JT and 0 < 0 < respectively.
Because of (14), this shows (4) for 6 € [0, Jﬁ] Ulr — n”? m),n €N,

Since u*(%) < %, it follows from (14) and a summation by parts that it will be sufficient to

show that
. (3),

wn(Q):zz T sm<2k+4>9>0 for0 <0 <mandn=1,2,
k=0 '

T
n+1°

in order to prove (4) for n = 1, 2. A straightforward calculation gives w,(0) = sin % pn(cos %),
n =1, 2, where

1
pi(x) = (7—12x—4x + 28x3 +4x)

2 5 6 7 8
P2l = = (21 — 72x — 10x2 + 539x% — 445x% — 574x5 4+ 448x° + 203x7 + 7x )

By the method of Sturm sequences we see that p,(x) does not vanish in (0, 1) whenn = 1, 2.
Clearly p,,(0) > 0 and thus the cases n = 1, 2 of (4) are proven.
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2.2. The case ST” <0 <m-— n”? of (4)

Because of (14), the proof of this case will be completed if we can show that W, () > 0 for
3

n% < 6 < 3. In order to do this we will apply Lemma 1 with the parameters f(6) = sin6,

c®) = %,a: Srandb = 3?”(n > 3).
In this case

cos% /(2n+1)9 sint sin & /(2n+1)9 COStd[

0 tl-n siné ti=n

It is immediately clear that S(x) = f(f t*~1sint dr is positive for all x € R and it is shown
in [10, Section 2] that the same holds for the integral C(x) := f(f t*~1 cos ¢ dt. Therefore, since

itis readily verified that cos % /sin@ and — sin % / sin@ are decreasing on (0, %], we obtain that

3n
for m <6 < 3
cos L [OmHDO gy | @it Gog;
@) 2 =57 P P
sin =% Jo e 4Jo o
. In
_ cos iz /2” sint o 1 / T cost . (15)
Tosin3Z Jo o 1t 4Jo ot

where the latter inequality is obtained by minimizing S(x) and C(x) over x > 77”.

Furthermore, it is easy to see that, for f(6) and c(f) as defined above, the functions —q(6)
and r (@) are positive and decreasing on (0, 371. Since sin “79 / sin @ is increasing on this interval,

we obtain that for 0 < 0 < %”

i Bux
() (2q(9> ke —r(e)s<e)> > I (2 (0)SIn o ) (%”)) (16)
n=g

Finally, for a and b as defined above, it follows that for n > 3 the coefficients a,, b, and ¢,
are smaller than

2

37 1—pn 3 1—u Tl —pw

8 sin 3% = T
S 12(Y) 9(%)

2
respectively.
Lemma 1, together with (15)—(17), now yields that for .25 < 6 < 3” andn > 2

; a7

. 3w
8 sin =g

2HORL D)Wy (6) > 0.2109. ...

2.3. The case ﬁ <0 <% of4

In order to prove this case of (4) we will apply Lemma 1 on the three intervals I =
(2 52l b= (52, 5l and I = (5, 2] (n = 3).
To this end, observe that with f(0) = cos@ and c(0) = £ +9 we have

Kkn(0) =

sin§ p@rtDo sin (t — 37”) cos & (@O gin (s — )
dr — — 44

sin 6 tl-u sin 6 tl-n
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As described in the proof of [9, Lemma 1] it follows from the definition of ©* ( ) and p* ( )

that f; t'~* sin (t - T) dr and [y t!=*sin(r — %) dr are non-positive for all x > 0. As

noted before, cos % /sinf and — sin % /sin@ are decreasing on (0, %) and thus we obtain that
for0 <6 <b<7%

1 @n+D8 cos (1 + bJ’T”)

0) > — dr.
kn(0) = sinb tl-n
For n > 3 this means that in /;
1 (2n+1)0 COS (t + 27”> 1 7 COS (t =+ 27”)
0) > dr > dr, 18
n(0) = sin 7 /0 ti=n ~sinZ /0 ti=n (18)

where the latter inequality is obtained by minimizing the integral over 0 < (2n + 1)6 < 7.
Likewise, by minimizing the respective integrals over ¥ < (2n + 1)6 and 7?” < (2n 4+ 1)6, we
find that forn > 3

on 3n n
1 Tcos(t%—m> 1 5 cos (t+ %)
0) > dr and K, (0) > 32 dr 19
Kkn(60) = sin%/o T and  k,(0) > sin%/o PR 19)

in I and I3, respectively.

Furthermore, it is straightforward to check that with f(6) and c(0) as defined above the
functions g (6) and r(6) are positive and increasing on (0, 7). Therefore, using the inequality
2sin“70/sin9 >u (<60 <m),wegetthatfor0 <6 <b<7%

sin 42
2g(9) s1ng —r(®)s@) > ug0) —r(b)s(). (20)
Finally, if a = Jﬁ and b = %—H’ then, for n > 3, we have b < 7, 2an > 61—3 and

2a(n + 1) > % and by Lemma 1 this, together with (18) and (20), shows that

. 7 COS (t + 27”)
gt—
200U 0) = o [ —

7

prs 1— T \> 1- Tl — w)
7sm 12( )fu <7sn )9<6—n>1;¢_ (%)yu

13
I (,uq(O) _r (%) 5 (%)) —0.0214...

for0 € I and n > 3.
Likewise, if a = 2n7-:—1’ b= nZ—Z andn > 3,thenb < %, 2an > 6” and 2a(n + 1) > 7, and

ifa = n+2, b=7% Z and n > 3, then 2an > 6—” and 2a(n —I— 1) > 8—” Slmllar reasoning as before

now shows that, for n > 3, 2#9H*~ lF(,u)Un(Q) is larger than 0.0157 ...and 0.0670...in I, and
I3, respectively.



1076 S. Koumandos, M. Lamprecht / Journal of Approximation Theory 162 (2010) 1068-1084
2.4. The case 5 <0 < %’T of (4)

In order to prove this case of (4), recall the well-known inequality, see [3, Lemma 3],

w .
Z ake12k9
k=n

which holds for every positive and decreasing sequence (ax)kcn, - Therefore, since

< 0<f<m)
sin 6

cos 3 ((1 — 40 + (1 + 2p)7)
(2sin @)

as n — oo and since the sequence (d )y is decreasing, we obtain forn > 3 and0 < 6 < &

U, (0) — 0<6<m)

U0 = cos 3((1 — 40 + (1 + 2p)7) _d
= (2sinH)H sinf’

It is readily verified that the function cos }‘((1 —4w)0 + (1 4+ 2u)m) is positive and increasing

on (%, %’) and so it follows from the above that for n > 3 and % <0 < %”

cos T (2+ d
cCHW  d (o oaas

28 sin 5

Un(0) =

3. Proof of Theorems 1, 3 and 4

Setting 2(z) = (1+2z)/(1 —z), the function 4 is univalent in D for all 0 < p < 2. Therefore,

if (2) holds for some p € (0, 1] and p € (0, 1], then the principle of subordination yields that

sho< h2P . Since for 0 < o =< %

largh®’| < pr and |arg(l —2)**7'| < % —prm inD,

this, in turn, implies the validity of (3) for the same p and p if 0 < p < % Since (1 —z)™" €
S1—y,2 and since it is shown in [9] that (3) cannot hold for 1 > u*(p), it thus follows that in

Theorems 1 and 4 the upper bound p* (}1) is sharp.

By an application of the convolution theory for starlike functions (see, for instance, [12, p.
55]) it has been shown in [9] that the validity of Conjecture 1 for a p € (0, 1] implies that for all
feSi—upwith0d < u <u*(p)andalln e N

sn(f, 2) - (1+Z>p
Pouxf 11—z

and that this, in turn, implies that for all f € S;_,» withO < u < pu*(p) andalln e N

2p
%sn(f,z)<<1+z> .

11—z
Hence, Theorems 3 and 4 follow immediately from Theorem 1.
Now, in order to complete the proof of Theorem 1, it only remains to be shown that (2) holds

for p = }1, 0<pu=<upu* (}‘) and n € N and because of the minimum principle for harmonic
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functions this will be done once we have proven that
. L\ 4
Re [(1 — i) <s;;(e21")) ] >0 Q1)

forO < pu < u* ( ) neNand0 <60 < 7.
To this end, note first that

- W « 1
T,(0) = o 2k+4 >0 for0<6<2m, O<pu<p 7 (22)
=0

and n € N. For 0 < 0 < r this is a consequence of [5, (6.4)], while for 7 < 6 < 27 it follows
from the fact that 7, 2w — 0) = U, (w — 0) > 0 (this latter relation also shows the sharpness of

the bound p* (%) for the positivity of the 7}, in [0, 27r)). We also have

on

V,(0) = o

1
os(2k9+%>>0 for@eR,0<M§,u*<Z) (23)
and n € N. Applying elementary trigonometric identities (e.t.i.) we get
0 .0
Vn(6) = cos 1 U,(0) + sin 1 T,(r —0),

and thus (23) follows from the positivity of the U, and T}, in [0, 7). The sharpness of p* (%) for

the positivity of the V,, in R can be seen by an asymptotic analysis similar to the one presented
in the proof of [9, Lemma 1].
Now, in order to prove (21), set s, K29y = C, () +1S,(0), i.e.

C,(0) = Z(“’l cos2kf and S,(0) = H%sinzke,
forO0 < u < 1,0 € Rand n € N. Then e.t.i. and (23) show that
Xn(0) = Cu(0)* — $,(0)* = (Cu(8) + Sy ())(Cn(6) — Sx(0))
=2V, (@) Vot —6) >0 (24)

for0 e R,0 < u < u* ( ) and n € N (in particular, since Re(s} (%)) = 3(9) - S,%(G), we

see that (6) holds). Setting Z,, () := C,,(0)S,(6)/ X, (6) we find that the left-hand side of (21) is
equal to

2sinf X2(0) p(Z,(0)), where p(x) := —4x*sin6 + 4x cos + sin 6.
For 0 < 6 < 7 we have p(x) > 0 if, and only if,
—1+4+cosf < 2xsinf < 1+ cosé,

and thus, since sin(wr — 0)Z,(x —0) = —sin# Z, () and cos(r — 6) = — cos 9, it follows that
(21) holds if, and only if,

2sinf0Z,(0) < 14cosf for0 <6 < m. (25)
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Because of (24) the inequality (25) is equivalent to

0 < (14cos0)(C2() — S2(0)) — 25in6 C,(0)S,(6)
= Re |:(1 + ¢l%) (s,‘,‘(ezie))z} =2cos g Re [(eie/“s,’,‘(ezie))z}
for 0 < 6 < . E.t.i. show that
Re [(eie/‘*s#(em))z} =2U,(0) - T(r — 0)

for 0 < 8 < . By Theorem 2 and (22) the product U, (0)T,,(;r — 0) is positive for 0 < 6 < =,
0<pu=<np* (%) and n € N. Hence, (21) holds for the required set of parameters. The proof of
Theorem 1 is thus complete.

4. Proof of Theorem 5

We will first show that £’(x) cannot be completely monotonic on (0, o0) when 0 < u < 1/3.
To see this, we observe that
| I'(x +p)

'x+1

where ¥ (x) := I'"(x)/I'(x), and therefore £(0) = 1. On the other hand, using the asymptotic
formulae

500 = (3 (Y@ ) — Y@+ D) +2 - ), (26)

Fae+w o, pld-—w  wld-w@-—w@u-1 <i>

I'x+1) )C o 2x + 24 x2 +0 B (27)

Yx+p—yYvx+1)= p-1 +M(1_M) —i—M(l_M)(I_ZM) +0<i>, (28)
X 2 x2 6x3 x4

as x — oo (cf. [1, p. 257]; the second formula follows by considering % log(L'(x+w)/I'(x+1))
and applying the first one), we obtain

: 2 5 Coud =) @2 =pw)Bu—1)
Jim (x78' () = 24 ’ 29)
which is negative when 0 < u < 1/3. Thus, for this range of i, the function £’ (x) changes sign

on (0, 00).
Now, for 0 < « < 1, consider the function

ax _ ]

e
fx) = prameat
The convexity of this function on (0, co) was crucial in the proof of [6, Thm. 1(i)]. In fact, it is
proved in [6] that the function f(x) is strictly decreasing on (0, co) when 0 < o < 1. For those o
itis convex on (0, oo) if and only if 0 < o < 1/2. See [6, Lemma 1, (1)] (to see that the condition
0 < a < 1/2 is necessary, observe that, by (30) and (33) below, f”(0) = a(a — 1)2a — 1)).
However, in the case 1/2 < o < 2/3 we have the following:

Lemma 2. Suppose that 1/2 < o <2/3. Then
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@ f"(x) > 0, for x € [1, c0).
(i) f"(x) > 0, for x € [0, 1].

Proof. We have

1
f//(x) — (a — 1)2 e(ot+2)x + (—20[2 +2a + 1)e(a+l)x + a2eocx _ er —e¥].
@ =1
Thus
3 o
i _ X Pp(a) , 3
f(x)—(ex_1> Z; e (30)
n=
where

Po@)=(a— 1> @+2)"+ (20> +20+ D)@+ D" +a">—-2" -1, n>3.
(cf. [6, (2.1)]). We first prove that

P,(x) >0, foralln >5whenl/2 <o <2/3. 31D
Clearly,

Pr(a) > Qn(a),
where

On(@) = (@ — 1> (@+2)" —2".
‘We shall show that

On(@) >0, foralln>38, 1/2 <« <2/3. (32)
First,
5\" 1 /5\"
Qn(a)z(a_l)z (5) _2’126(5) -2">0, n=>10.

On the other hand, since
0) (@) = @+2)"" (= 1) (0 +2)a —n+4),

0, () <0,for5 <n < 9. Since 03(2/3) = 28.1236... and Q9(2/3) = 245.6630..., the
proof of (32) is complete. In order to prove (31), first observe that P;(«) > Q7(«) + g («), where
q(a) = (=202 +2a+ D@+ 17— 1.Ttis easy to see that g («) is an increasing function of «
and therefore P7(o) > Q7(2/3) +q(1/2) =3.1752.... Also,

Ps(a) = oo — 1) (127 + 270% + 7o — 23),
Ps(a) = a(a — 1) 20a* + 680> + 730> — 170 — 72).

A straightforward computation shows that P5(«) > 0 and Pg(ex) > O for 1/2 < o < 2/3 and
therefore the proof of (31) is complete.
Note that

PBa@=ad(@—-—1)QRa—-1)<0, 1/2<a<2/3 (33)
while the polynomial

Py(a) =6 (@ — 1) (@ +a —1) (34)
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has a unique root ¢y = # = 0.618... in the interval (1/2, 2/3) so that Ps(«x) > O for
1/2 < a < ag and Py(a) < O forog < o < 2/3.
In order to prove part (i) of the lemma we use (30) and set

S@ =Y Fn(@) n-s

|
=3 n:

It follows from (31) that §”(x) > 0 for x > O and 1/2 < a < 2/3. Therefore §’(x) is a strictly
increasing function of x in [1, co) and hence
Py (a) - Py(@) Ps(a)

n! 4! 2 5!

§'(x)

v

S'h=) (n=3)
n=4

1
20%@- (6> +21a% + 11a — 19) > 0,

for 1/2 < o <2/3. S(x) is thus strictly increasing on [1, oo) and consequently

\%

0 P, 7 P
NOEROEDY nﬂ‘” > "k(“)‘)
n=3 ’ k=3 ’

1
= 0@ (30> + 2750 + 12200 + 30400> + 2977a — 3771) > 0,

for 1/2 < o < 2/3. This in combination with (30) completes the proof of part (i).
We now turn to the proof of (ii). Differentiating (30) we see that inequality f”’(x) > 0 is
equivalent to

p'(x)
p(x)

where S(x) as above and

3 S(x)+ S (x) >0, (35)

pX) =7
Inequality (35) is true for x = 0, because it reduces to
Py(a) — 6P3(a) = 6a* (@ — 1)* > 0.

Assume that 0 < x < 1. Writing

p’(X)_l(l_ x )_1
1

p(x) T x et —
and using the known inequalities
X X x  x?
1--< <l—=—+—=
2 et -1 2 12

(see [7] for a more general result), we get

< —=. (36)
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Let 1/2 < o < ap, where ap = *1%5 = 0.618... is the unique root in the interval
(1/2, 2/3) of the polynomial P4(c). Since in this case Ps(«) > 0, P3(xx) < 0, we obtain, using
(31) and (36),

/ 2 [e}e]
5P (x) SG) 4 5'() > — (3_x + x_) mek—4+z Pr(@) k — 3 x4, 37)

p(x) 2 4 k=4 k! k=4
When 0 < x < x9:= -3+ 413 =0.6055... we have 32" + "TZ < 1. Hence, from (37) we get
P (x
3%8(”5() Z "k(,)ac 4 x>0, (38)
k=5

and the last inequality is obtained using once more (31). When xop < x < 1 we obviously have
%x + XTZ < % and thus, because of (37) and (31), we get

p'(x) , 3 Py@) | & Pr(@) 14
3,0(x) Sx)+ S (x) > 1 4 +Z<k_Z)T

3P 1Ps@ 5 P ,
4 4 4 5! 4 6!
3 Py(a) 1 Ps(a) 5 Ps(a)
- X0 )CO
44 4 5! 4 6!
:T40(11—3«/_)a(1—a)( 100a* — (394 + 18 v/13)®
+ (256 + 162 v 13)a* + (796 + 192/13)a — 279 — 168+/13).

Since it is straightforward to check that the last expression is positive for 1/2 < o < «y, this and
(38) establish (35) in the case where 1/2 < a < «y.
Next, suppose that g < o < 2/3. In this case Ps(o) < 0. We have

p'(x) p(X) P3(a) = Py(a) Py(ar)
p(x) (x)( 3l 41 x>+ 41
P/(x) = Pr(a) k—3 = Pr(a) _ k—4
3p(x) ;—k! x +k; o (k — 3) xF4. (39)

Since P3(a) < 0, using the second inequality of (36) we obtain

p’(.X) PS(Ol) P4(O[) P4(a) _P3(Ol) P4(Ol) _l 5 e
3:0()6)( + x>+ T 2 + 1% (I1-—a)”>0. (40)

3! 4!
On the other hand, using the first inequality of (36) together with (31), we obtain

ZPk(a) . 3+ZPk(a)(k 3) k- 4>Z<k_ 149>P’<(“) k=4 2 0. (41)

p(x k!

Combining (40) with (41) we deduce that the expression in (39) is positive and this establishes
(35) in the case where o < o < 2/3.
The proof of Lemma 2 is complete. [
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We can now give a proof of Theorem 5.
First observe that

I'(x+p)

— 2—p
TGt X d(x), 42)

£ (x) =
where

2—u 2 2 —uy

D(x) = (w(x+u)—1ﬁ(x+1)+T> +(¢(x+u)—tﬁ(x+1)+T).

Then, as in the proof of [6, Thm. 1] we find that

B(x) = / e F () du, 43)
0

where, for u > 0,

F(u) = /uo(u —v)o@)dv —uo(u)
0

and

o) :=2—pu—¢u)
with

ell—mu _
pu) = —— PO =1—p.
et —1

Then

F'(u) = /u o'(u—v)oW) dv—uoc'(u),

0

and

F'(u) = u¢” () +/0 ¢'(u —v)¢'(v) dv. (44)

It is shown in [6, Lemma 1] that when 0 < . < 1 we have ¢’ (1) < Oforu € [0, 00). In addition,
when 1/2 < 1 < 1 we have ¢”(u) > 0 for u € [0, c0). In view of (44), the combination of
these results implies that F”(u) > 0 for u > 0.

Using Lemma 2, we shall prove that for 1/3 < u < 1/2, we also have F”(u) > 0 foru > 0,
although, for this range of u the function ¢” (1) assumes negative values. In fact,

1
¢"(0) = ch—w@eu—1<0.
Note also that
1
#'(0) = —zu = <0.

It follows from Lemma 2, that when 1/3 < u < 1/2 the function ¢” (1) has a unique root in the
interval (0, 1) which we denote by w,,. Clearly, ¢" (1) > 0 for u € [w,, c0) and therefore, by
(44), F”(u) > 0 for u € [w,, 00).
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Suppose that 0 < u < w,,. Consider the function of v
) =¢'u—v)¢'(v), 0<v<u<aw,<l.
Differentiating with respect to v we get

8 (W) =—¢"u-v)¢ (V) +¢'u—v)¢" )

and also

§"(w) =¢"(u—v)¢' (V) =2¢"(u —v)¢" (V) +¢'(u —v)$" (V).

Lemma 2 ensures that §” (v) < 0 when v € [0, u] with 0 < u < w,,. Therefore, the function §(v)
is concave when v € [0, u] and thus we obtain the estimate

$(v) = ¢' 0 ¢'(w), vel0,ul (45)

It is perhaps of interest to note that the function & (v) has a graph that is symmetric with respect
to line v = u/2 and that § (v) is increasing on [0, u /2] and decreasing on [u/2, u] and therefore
the estimate (45) can also be obtained in this way.

It follows from (44) and (45) that

F'"(uw) = u[¢" ) +¢'(0) ¢’ )], (46)

for 0 < u < wy. From Lemma 2 we deduce that ¢"’(u) + ¢'(0) ¢"(u) > 0 for u € (0, w,).
Therefore ¢” (1) + ¢’ (0) ¢’ (u) increases in this interval, and hence

1
¢" () + ¢'(0)¢' () = ¢"(0) + ¢/ (0)* = A=W 2 -wGu—-1=0, (47)

for1/3<u<1.

It follows from (46) and (47) that F”(u) > 0 for 0 < u < w, and thus this inequality holds
for all u > 0. Hence the function F(u) satisfies the following: F”(u) > 0, F'(u) > 0 = F’(0)
and F(u) > F(0) = 0. Taking into consideration (43), it follows from [6, Lemma 2] (see
also [8, Thm. 1.3] for a more general result), that the function x2 &(x) is completely monotonic
on (0, c0).

Because of (42) we have

I'x+p) 1

2
—F(x D Fx d(x).

—£"(x) =
It is straightforward to check that x ~# is completely monotonic on (0, co) for . > 0; using
Bernstein’s Theorem (cf. Section 1) and the well-known formula (cf. [2, p. 615])

I'x+a)
I'(x+b)

we see that also I'(x 4+ w)/I'(x 4 1) is completely monotonic. Since it follows readily from the
Leibniz product rule that the product of two completely monotonic functions is again completely
monotonic, we have thus shown that the function —&”(x) is completely monotonic on (0, co).
Finally, from (29) we get limy_, o &'(x) = 0, and thus &’(x) > 0 for x > 0. The relation (9)
shows that the function £'(x) is completely monotonic on (0, 0o).

Thus the function & (x) is strictly increasing and concave on (0, co) and, by (27),

l o0
/ e e M (1 - 67“)b7”71 du, b>a,
F(b — (1) 0

m(l—p)

Aim §(x) = 5
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which gives the second inequality of (8).
This completes the proof of Theorem 5.
As a consequence of the above we also have the following remarkable result.

Corollary 2. Let

2—u 2 2—n\
P(x) = (1/f(x+u)—w(x+1)+7) +<1ﬂ(x+u)—t/f(x+1)+T>.

The function x> &(x) is completely monotonic on (0, 00) if and only if 1/3 < u < 1.

Proof. The proof is contained in the proof of Theorem 5. In order to see that the result is sharp
with respect to (i, observe that by (28),

1
lim x* o) = S =W 2-WEr-1 <0
X—>00 12
for 0 < u < 1/3, while a direct calculation yields

lim x2¢(x)=1—-w)Q2—p) >0
x—>0t
for 0 < p < 1. Therefore the function x> &(x) changes sign on (0, 00) when0 < . < 1/3. O
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