On a conjecture for trigonometric sums and starlike functions, II

Stamatis Koumandos*, Martin Lamprecht
Department of Mathematics and Statistics, The University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus

Received 14 November 2008; accepted 16 November 2009
Available online 4 December 2009
Communicated by Paul Nevai

Abstract

We prove the case $\rho=\frac{1}{4}$ of the following conjecture of Koumandos and Ruscheweyh: let $s_{n}^{\mu}(z):=$ $\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} z^{k}$, and for $\rho \in(0,1]$ let $\mu^{*}(\rho)$ be the unique solution of $$
\int_{0}^{(\rho+1) \pi} \sin (t-\rho \pi) t^{\mu-1} \mathrm{~d} t=0
$$ in $(0,1]$. Then we have $\left|\arg \left[(1-z)^{\rho} s_{n}^{\mu}(z)\right]\right| \leq \rho \pi / 2$ for $0<\mu \leq \mu^{*}(\rho), n \in \mathbb{N}$ and z in the unit disk of \mathbb{C} and $\mu^{*}(\rho)$ is the largest number with this property. For the proof of this other new results are required that are of independent interest. For instance, we find the best possible lower bound μ_{0} such that the derivative of $x-\frac{\Gamma(x+\mu)}{\Gamma(x+1)} x^{2-\mu}$ is completely monotonic on $(0, \infty)$ for $\mu_{0} \leq \mu<1$. (C) 2009 Elsevier Inc. All rights reserved.

Keywords: Positive trigonometric sums; Inequalities; Gegenbauer polynomials; Starlike functions; Subordination; Completely monotonic functions; Gamma and psi functions

1. Introduction

Let \mathcal{A} be the class of functions that are analytic in the unit disk $\mathbb{D}:=\{z:|z|<1\}$ of the complex plane. For any function $f \in \mathcal{A}$ we will denote by $s_{n}(f, z)$ the nth partial sum

[^0]of its power series expansion around the origin. If $f(z)=(1-z)^{-\mu}, \mu>0$, we simply put $s_{n}^{\mu}(z):=s_{n}(f, z)=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} z^{k}$. Here $(\mu)_{k}:=\mu(\mu+1) \cdots(\mu+k-1)$ is the Pochhammer symbol. For two functions f and g in \mathcal{A}, we write $f \prec g$ and say that f is subordinate to g in \mathbb{D} if there is a function w in \mathcal{A} satisfying $|w(z)| \leq|z|, z \in \mathbb{D}$, such that $f=g \circ w$. This implies in particular that $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$. On the other hand these two conditions are sufficient for $f \prec g$ if g is univalent in \mathbb{D} (cf. [11, p. 35]).

For $\rho \in(0,1]$ let $\mu^{*}(\rho)$ be the unique solution in (0,1] (cf. the proof of [9, Lemma 1]) of the equation

$$
\begin{equation*}
\int_{0}^{(\rho+1) \pi} \sin (t-\rho \pi) t^{\mu-1} \mathrm{~d} t=0 \tag{1}
\end{equation*}
$$

In [9] Koumandos and Ruscheweyh proposed the following conjecture.
Conjecture 1. For $\rho \in(0,1]$ the number $\mu^{*}(\rho)$ is equal to the maximal number $\mu(\rho)$ such that for all $n \in \mathbb{N}$ and $0<\mu \leq \mu(\rho)$

$$
\begin{equation*}
(1-z)^{\rho} s_{n}^{\mu}(z) \prec\left(\frac{1+z}{1-z}\right)^{\rho} \tag{2}
\end{equation*}
$$

As shown in [9], this conjecture contains the following weaker one.
Conjecture 2. Let $\rho \in(0,1]$. Inequality

$$
\begin{equation*}
\operatorname{Re}\left[(1-z)^{2 \rho-1} s_{n}^{\mu}(z)\right]>0 \tag{3}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$ and $z \in \mathbb{D}$ when $0<\mu \leq \mu^{*}(\rho)$ and $\mu^{*}(\rho)$ is the largest number with this property.

These conjectures were motivated by the results found in [10], where Koumandos and Ruscheweyh proved the special case $\rho=\frac{1}{2}$ of (the then yet unknown) Conjecture 2. In [9] the case $\rho=\frac{1}{2}$ of Conjecture 1 and $\rho=\frac{3}{4}$ of Conjecture 2 were verified. There it is also shown that for $\rho \in(0,1]$ we have $\mu(\rho) \leq \mu^{*}(\rho)$. Here we will prove the case $\rho=\frac{1}{4}$ of Conjecture 1 . The proof of Conjecture 1 for $\rho=\frac{1}{2}$, given in [9] relies on a sharp trigonometric inequality established in [5] that generalizes the celebrated Vietoris' Theorem [14], see also [3].

The main results of this paper are the following.
Theorem 1. For $\rho=\frac{1}{4}$ the relation (2) holds for all $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)=0.38556655 \ldots$ and $\mu^{*}\left(\frac{1}{4}\right)$ is the largest number with this property.

The proof of this Theorem relies on a new sharp trigonometric inequality.
Theorem 2. For $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$ we have

$$
\begin{equation*}
U_{n}(\theta):=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} \cos \left[\left(2 k+\frac{1}{4}\right) \theta+\frac{\pi}{4}\right]>0 \tag{4}
\end{equation*}
$$

for $n \in \mathbb{N}$ and $0 \leq \theta<\pi$ and $\mu^{*}\left(\frac{1}{4}\right)$ is the largest number with this property.

Theorem 1 has some interesting applications concerning starlike functions. Recall that the class \mathcal{S}_{λ} of functions starlike of order $\lambda, \lambda<1$, consists of those functions $f \in \mathcal{A}$ that satisfy $f(0)=f^{\prime}(0)-1=0$ and $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\lambda$ in \mathbb{D}. It is easy to check that $z /(1-z)^{\mu} \in \mathcal{S}_{1-\frac{\mu}{2}}$. Recall further that for $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ the Hadamard product or convolution $f * g$ is defined by $(f * g)(z):=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}$. As in [9] we denote by $\Phi_{\rho, \mu}$ the uniquely determined function f in \mathcal{A} that satisfies

$$
\frac{z}{(1-z)^{\mu}} * f(z)=\frac{z}{(1-z)^{\rho}} .
$$

Our Theorem 1 implies the following two results.
Theorem 3. If $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$, then we have

$$
\frac{s_{n}(f, z)}{\Phi_{\frac{1}{4}, \mu} * f} \prec\left(\frac{1+z}{1-z}\right)^{\frac{1}{4}}
$$

for all $f \in \mathcal{S}_{1-\mu / 2}$ and $n \in \mathbb{N}$.
Theorem 4. We have

$$
\begin{equation*}
\frac{1}{z} s_{n}(f, z) \prec\left(\frac{1+z}{1-z}\right)^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

for all $f \in \mathcal{S}_{1-\mu / 2}$ and $n \in \mathbb{N}$ if and only if $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$.
Note that (5) is equivalent to $\operatorname{Re}\left(s_{n}(f, z) / z\right)^{2}>0$ for $z \in \mathbb{D}$. Our proof of Theorem 1 will show that for the special case $f=z /(1-z)^{\mu}$ we even have

$$
\begin{equation*}
\operatorname{Re}\left(s_{n}^{\mu}(z)\right)^{2}>0 \quad \text { for } z \in \overline{\mathbb{D}} . \tag{6}
\end{equation*}
$$

Let $C_{k}^{\lambda}(x)$ be the Gegenbauer polynomial of degree k and order $\lambda>0$, defined by the generating function

$$
G_{\lambda}(z, x):=\left(1-2 x z+z^{2}\right)^{-\lambda}=\sum_{k=0}^{\infty} C_{k}^{\lambda}(x) z^{k}, \quad x \in[-1,1] .
$$

It is easily seen that $z G_{\lambda}(\cdot, x) \in \mathcal{S}_{1-\lambda}$ and so it is clear that Theorem 4 implies the following.
Corollary 1. The inequality

$$
\begin{equation*}
\left|\arg \sum_{k=0}^{n} C_{k}^{\lambda}(x) z^{k}\right|<\frac{\pi}{4}, \quad z \in \mathbb{D} \tag{7}
\end{equation*}
$$

holds for all $-1<x<1$ precisely when $0<\lambda \leq \frac{1}{2} \mu^{*}\left(\frac{1}{4}\right)=0.1927 \ldots$.
For our proof of Theorem 2 it will be necessary to show that

$$
\begin{equation*}
0<\xi(x):=x-\frac{\Gamma(x+\mu)}{\Gamma(x+1)} x^{2-\mu}<\frac{\mu(1-\mu)}{2}, \quad x>0, \tag{8}
\end{equation*}
$$

when $\mu=\mu^{*}\left(\frac{1}{4}\right)=0.385 \ldots$. Here $\Gamma(x)$ is Euler's gamma function. Inequality (8) was shown in [6, Thm. 1] for $\frac{1}{2} \leq \mu<1$ and then, in the special case $\mu=\mu^{*}\left(\frac{3}{4}\right)=0.907 \ldots$, applied in the proof of the case $\rho=\frac{3}{4}$ of Conjecture 2 in [9]. In fact, in [6, Thm. 1] a much stronger result is shown, namely that ξ^{\prime} is completely monotonic on $(0, \infty)$ for $\frac{1}{2} \leq \mu<1$. Recall that a function $f:(0, \infty) \rightarrow \mathbb{R}$ is called completely monotonic if it has derivatives of all orders and satisfies

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0 \quad \text { for all } x>0 \text { and } n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

It is known that if a non-constant function f is completely monotonic then strict inequality holds in (9) (cf. [4] or [13]). A characterization of completely monotonic functions is given by Bernstein's theorem, see [15, p. 161], which states that f is completely monotonic on $(0, \infty)$ if and only if

$$
f(x)=\int_{0}^{\infty} \mathrm{e}^{-x t} \mathrm{~d} m(t)
$$

where m is a non-negative measure on $[0, \infty)$ such that the integral converges for all $x>0$.
Here we will refine some techniques developed in [6] in order to obtain a best possible extension of [6, Thm. 1(i)] that will in particular imply (8) for $\mu=\mu^{*}\left(\frac{1}{4}\right)$.

Theorem 5. The function $\xi^{\prime}(x)$ is completely monotonic on $(0, \infty)$, when $\frac{1}{3} \leq \mu<1$. The lower bound $1 / 3$ is best possible. In particular, the function $\xi(x)$ is strictly increasing and concave on $(0, \infty)$ and the inequality (8) holds for all $x>0$, for this range of μ.

For an extensive bibliography regarding completely monotonic functions and inequalities involving the gamma function we refer to the recent paper [6].

In the next section we will prove Theorem 2. In Section 3 we will show how this Theorem implies Theorems 1, 3 and 4. In Section 4 we will present the proof of Theorem 5.

2. Proof of Theorem 2

First, note that, using summation by parts, it is easy to see that it will be enough to show (4) for $\mu=\mu^{*}\left(\frac{1}{4}\right)$ and that an argument similar to the one given in the proof of [9, Lemma 1] shows that the upper bound $\mu^{*}\left(\frac{1}{4}\right)$ is sharp for the positivity of the trigonometric sums $U_{n}(\theta)$ in $[0, \pi)$.

Next, recall the well-known identity

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} c} \sum_{k=0}^{n} \mathrm{e}^{\mathrm{i} k \theta}=\mathrm{e}^{\mathrm{i}(c+n \theta / 2)} \frac{\sin \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}, \quad n \in \mathbb{N}, \tag{10}
\end{equation*}
$$

which holds for all $\theta \in \mathbb{R}$ for which $\sin \frac{\theta}{2}$ does not vanish and every $c \in \mathbb{R}$ (which might even depend on θ).

Further, observe that if we set

$$
\Delta_{n}=\frac{1}{n^{1-\mu}}\left(\frac{1}{\Gamma(\mu)}-\frac{(\mu)_{n}}{n!n^{\mu-1}}\right)
$$

for $n \in \mathbb{N}$ and $\frac{1}{3} \leq \mu<1$, then, because of Theorem 5, it follows as in the proof of [9, Prop. 4] that

$$
n \Delta_{n}<\frac{1}{\Gamma(\mu)} \frac{\mu(1-\mu)}{2} \frac{1}{n^{1-\mu}} .
$$

A small modification of the proof of this Proposition thus yields that

$$
\begin{equation*}
\left|\sum_{k=n+1}^{\infty} \Delta_{k} \mathrm{e}^{2 \mathrm{i} k \theta}\right| \leq \frac{\mu(1-\mu)}{2 \sin a} \frac{1}{\Gamma(\mu)} \frac{1}{(n+1)^{2-\mu}} \tag{11}
\end{equation*}
$$

for $0<a<\theta<\frac{\pi}{2}, n \in \mathbb{N}$ and $\frac{1}{3} \leq \mu<1$. We therefore obtain the following inequality, which for $\mu=\mu^{*}\left(\frac{3}{4}\right)$ was the crucial result in the proof of $[9,(3.3)]$ and will also play a crucial role in the proof of (4) that is presented here.

Lemma 1. Let $c(\theta)$ be a real integrable function depending on $\theta \in \mathbb{R}, \frac{1}{3} \leq \mu<1,0<a<b$ $\leq \frac{\pi}{2}$ and $d_{k}=\frac{(\mu)_{k}}{k!}, k \in \mathbb{N}_{0}$. Then for $f(\theta)=\sin \theta$ or $f(\theta)=\cos \theta$ we have for all $a \leq \theta \leq b$ and $n \in \mathbb{N}$

$$
\begin{align*}
& 2^{\mu} \theta^{\mu-1} \Gamma(\mu) \sum_{k=0}^{n} d_{k} f(2 k \theta+c(\theta)) \\
& \quad>\kappa_{n}(\theta)-a_{n}-b_{n}-c_{n}+\Gamma(\mu)\left(2 q(\theta) \frac{\sin \frac{\mu \theta}{2}}{\sin \theta}-r(\theta) s(\theta)\right), \tag{12}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{n}:=\frac{b}{\sin b} \frac{1-\mu}{(2 a n)^{1-\mu}} \frac{1}{4 n}, \quad b_{n}:=\frac{b^{2}}{\sin ^{2} b} \frac{1-\mu}{(2 a n)^{1-\mu}} \frac{1}{3 n}, \quad c_{n}:=\frac{\pi \mu(1-\mu)}{(2 a(n+1))^{2-\mu}}, \\
& q(\theta):=f\left(\frac{\mu}{2}(\pi-\theta)+c(\theta)-\frac{\pi}{2}\right), \quad r(\theta):=f\left(\frac{\mu}{2}(\pi-2 \theta)+c(\theta)\right), \\
& s(\theta):=\frac{1}{\sin \theta}\left[1-\left(\frac{\sin \theta}{\theta}\right)^{1-\mu}\right]
\end{aligned}
$$

and

$$
\kappa_{n}(\theta):=\frac{1}{\sin \theta} \int_{0}^{(2 n+1) \theta} \frac{f(t+c(\theta))}{t^{1-\mu}} \mathrm{d} t
$$

The function $s(\theta)$ is positive and increasing on $(0, \pi)$.
Proof. By [9, (3.8)] we have

$$
\begin{align*}
\sum_{k=0}^{n} d_{k} \mathrm{e}^{\mathrm{i} k \theta}= & F(\theta)+\frac{1}{\Gamma(\mu)} \frac{\theta}{\sin \theta} \frac{1}{(2 \theta)^{\mu}} \int_{0}^{(2 n+1) \theta} \frac{\mathrm{e}^{\mathrm{i} t}}{t^{1-\mu}} \mathrm{d} t \\
& -\frac{1}{\Gamma(\mu)} \frac{\theta}{\sin \theta}\left\{\sum_{k=n+1}^{\infty} A_{k}(\theta)+\sum_{k=n+1}^{\infty} B_{k}(\theta)\right\}+\sum_{k=n+1}^{\infty} \Delta_{k} \mathrm{e}^{2 \mathrm{i} k \theta}, \tag{13}
\end{align*}
$$

with

$$
F(\theta):=\sum_{k=0}^{\infty} d_{k} \mathrm{e}^{2 \mathrm{i} k \theta}-\frac{\theta}{\sin \theta} \frac{\mathrm{e}^{\mathrm{i} \mu \frac{\pi}{2}}}{(2 \theta)^{\mu}}
$$

and where

$$
\begin{aligned}
\left|\sum_{k=n+1}^{\infty} A_{k}(\theta)\right|<\frac{1-\mu}{8} \frac{1}{n^{2-\mu}}, \\
\left|\sum_{k=n+1}^{\infty} B_{k}(\theta)\right|<\frac{\theta}{\sin \theta} \frac{1-\mu}{6} \frac{1}{n^{2-\mu}}
\end{aligned}
$$

for $\theta \in \mathbb{R}$ by [9, Prop. 1]. As in the proof of [9, Prop. 2] it follows that

$$
F(\theta)=\frac{\theta^{1-\mu}}{2^{\mu}} \frac{\mathrm{e}^{\mathrm{i} \mu \frac{\pi}{2}}}{\sin \theta}\left\{\left(\mathrm{e}^{-\mathrm{i} \mu \theta}-1\right)-\left[1-\left(\frac{\sin \theta}{\theta}\right)^{1-\mu}\right] \mathrm{e}^{-\mathrm{i} \mu \theta}\right\}
$$

Hence

$$
2^{\mu} \theta^{\mu-1} F(\theta) \mathrm{e}^{\mathrm{i} c(\theta)}=2 \mathrm{e}^{\mathrm{i}\left(\frac{\mu}{2}(\pi-\theta)+c(\theta)-\frac{\pi}{2}\right)} \frac{\sin \frac{\mu \theta}{2}}{\sin \theta}-s(\theta) \mathrm{e}^{\mathrm{i}\left(\frac{\mu}{2}(\pi-2 \theta)+c(\theta)\right)}
$$

and thus (12) follows from (11) and the well-known inequality $\sin x>\frac{2}{\pi} x$ for $0<x<\frac{\pi}{2}$. It is straightforward to check that $s(\theta)$ is positive and increasing on $(0, \pi)$.
2.1. The cases $n=1,2$ and $\theta \in\left[0, \frac{\pi}{4 n+1}\right] \cup\left[\pi-\frac{\pi}{n+1}, \pi\right)$ of (4)

For the rest of Section 2 set $\mu:=\mu^{*}\left(\frac{1}{4}\right)$ and $d_{k}:=\frac{(\mu)_{k}}{k!}, k \in \mathbb{N}_{0}$. Observe that

$$
\begin{equation*}
W_{n}(\theta):=U_{n}(\pi-\theta)=\sum_{k=0}^{n} d_{k} \sin \left(2 k+\frac{1}{4}\right) \theta . \tag{14}
\end{equation*}
$$

We obviously have $U_{n}(0)>0$ for all $n \in \mathbb{N}$ and a summation by parts, together with (10), shows that $U_{n}(\theta)>0$ and $W_{n}(\theta)>0$ for $0<\theta \leq \frac{\pi}{4 n+1}$ and $0<\theta \leq \frac{\pi}{n+1}$, respectively. Because of (14), this shows (4) for $\theta \in\left[0, \frac{\pi}{4 n+1}\right] \cup\left[\pi-\frac{\pi}{n+1}, \pi\right), n \in \mathbb{N}$.

Since $\mu^{*}\left(\frac{1}{4}\right)<\frac{2}{5}$, it follows from (14) and a summation by parts that it will be sufficient to show that

$$
w_{n}(\theta):=\sum_{k=0}^{n} \frac{\left(\frac{2}{5}\right)_{k}}{k!} \sin \left(2 k+\frac{1}{4}\right) \theta>0 \quad \text { for } 0 \leq \theta<\pi \text { and } n=1,2,
$$

in order to prove (4) for $n=1,2$. A straightforward calculation gives $w_{n}(\theta)=\sin \frac{\theta}{4} p_{n}\left(\cos \frac{\theta}{2}\right)$, $n=1$, 2 , where

$$
\begin{aligned}
& p_{1}(x)=\frac{1}{5}\left(7-12 x-4 x^{2}+28 x^{3}+4 x^{4}\right) \\
& p_{2}(x)=\frac{2}{25}\left(21-72 x-10 x^{2}+539 x^{3}-445 x^{4}-574 x^{5}+448 x^{6}+203 x^{7}+7 x^{8}\right) .
\end{aligned}
$$

By the method of Sturm sequences we see that $p_{n}(x)$ does not vanish in $(0,1)$ when $n=1,2$. Clearly $p_{n}(0)>0$ and thus the cases $n=1,2$ of (4) are proven.

2.2. The case $\frac{5 \pi}{8} \leq \theta<\pi-\frac{\pi}{n+1}$ of (4)

Because of (14), the proof of this case will be completed if we can show that $W_{n}(\theta)>0$ for $\frac{\pi}{n+1}<\theta \leq \frac{3 \pi}{8}$. In order to do this we will apply Lemma 1 with the parameters $f(\theta)=\sin \theta$, $c(\theta)=\frac{\theta}{4}, a=\frac{\pi}{n+1}$ and $b=\frac{3 \pi}{8}(n \geq 3)$.

In this case

$$
\kappa_{n}(\theta)=\frac{\cos \frac{\theta}{4}}{\sin \theta} \int_{0}^{(2 n+1) \theta} \frac{\sin t}{t^{1-\mu}} \mathrm{d} t+\frac{\sin \frac{\theta}{4}}{\sin \theta} \int_{0}^{(2 n+1) \theta} \frac{\cos t}{t^{1-\mu}} \mathrm{d} t .
$$

It is immediately clear that $S(x):=\int_{0}^{x} t^{\mu-1} \sin t \mathrm{~d} t$ is positive for all $x \in \mathbb{R}$ and it is shown in [10, Section 2] that the same holds for the integral $C(x):=\int_{0}^{x} t^{\mu-1} \cos t \mathrm{~d} t$. Therefore, since it is readily verified that $\cos \frac{\theta}{4} / \sin \theta$ and $-\sin \frac{\theta}{4} / \sin \theta$ are decreasing on $\left(0, \frac{\pi}{2}\right]$, we obtain that for $\frac{\pi}{n+1}<\theta \leq \frac{3 \pi}{8}$

$$
\begin{align*}
\kappa_{n}(\theta) & \geq \frac{\cos \frac{3 \pi}{32}}{\sin \frac{3 \pi}{8}} \int_{0}^{(2 n+1) \theta} \frac{\sin t}{t^{1-\mu}} \mathrm{d} t+\frac{1}{4} \int_{0}^{(2 n+1) \theta} \frac{\cos t}{t^{1-\mu}} \mathrm{d} t \\
& \geq \frac{\cos \frac{3 \pi}{32}}{\sin \frac{3 \pi}{8}} \int_{0}^{2 \pi} \frac{\sin t}{t^{1-\mu}} \mathrm{d} t+\frac{1}{4} \int_{0}^{\frac{7 \pi}{4}} \frac{\cos t}{t^{1-\mu}} \mathrm{d} t, \tag{15}
\end{align*}
$$

where the latter inequality is obtained by minimizing $S(x)$ and $C(x)$ over $x \geq \frac{7 \pi}{4}$.
Furthermore, it is easy to see that, for $f(\theta)$ and $c(\theta)$ as defined above, the functions $-q(\theta)$ and $r(\theta)$ are positive and decreasing on $\left(0, \frac{3 \pi}{8}\right]$. Since $\sin \frac{\mu \theta}{2} / \sin \theta$ is increasing on this interval, we obtain that for $0<\theta \leq \frac{3 \pi}{8}$

$$
\begin{equation*}
\Gamma(\mu)\left(2 q(\theta) \frac{\sin \frac{\mu \theta}{2}}{\sin \theta}-r(\theta) s(\theta)\right) \geq \Gamma(\mu)\left(2 q(0) \frac{\sin \frac{3 \mu \pi}{16}}{\sin \frac{3 \pi}{8}}-r(0) s\left(\frac{3 \pi}{8}\right)\right) \tag{16}
\end{equation*}
$$

Finally, for a and b as defined above, it follows that for $n \geq 3$ the coefficients a_{n}, b_{n} and c_{n} are smaller than

$$
\begin{equation*}
\frac{3 \pi}{8 \sin \frac{3 \pi}{8}} \frac{1-\mu}{12\left(\frac{3 \pi}{2}\right)^{1-\mu}}, \quad\left(\frac{3 \pi}{8 \sin \frac{3 \pi}{8}}\right)^{2} \frac{1-\mu}{9\left(\frac{3 \pi}{2}\right)^{1-\mu}} \quad \text { and } \quad \frac{\pi \mu(1-\mu)}{(2 \pi)^{2-\mu}} \tag{17}
\end{equation*}
$$

respectively.
Lemma 1, together with (15)-(17), now yields that for $\frac{\pi}{n+1}<\theta \leq \frac{3 \pi}{8}$ and $n \geq 2$

$$
2^{\mu} \theta^{\mu-1} \Gamma(\mu) W_{n}(\theta)>0.2109 \ldots
$$

2.3. The case $\frac{\pi}{4 n+1}<\theta \leq \frac{\pi}{3}$ of (4)

In order to prove this case of (4) we will apply Lemma 1 on the three intervals $I_{1}:=$ $\left(\frac{\pi}{4 n+1}, \frac{\pi}{2 n+1}\right], I_{2}:=\left(\frac{\pi}{2 n+1}, \frac{\pi}{n+2}\right]$ and $I_{3}:=\left(\frac{\pi}{n+2}, \frac{\pi}{3}\right](n \geq 3)$.

To this end, observe that with $f(\theta)=\cos \theta$ and $c(\theta)=\frac{\pi+\theta}{4}$ we have

$$
\kappa_{n}(\theta)=\frac{\sin \frac{\theta}{4}}{\sin \theta} \int_{0}^{(2 n+1) \theta} \frac{\sin \left(t-\frac{3 \pi}{4}\right)}{t^{1-\mu}} \mathrm{d} t-\frac{\cos \frac{\theta}{4}}{\sin \theta} \int_{0}^{(2 n+1) \theta} \frac{\sin \left(t-\frac{\pi}{4}\right)}{t^{1-\mu}} \mathrm{d} t .
$$

As described in the proof of [9, Lemma 1] it follows from the definition of $\mu^{*}\left(\frac{1}{4}\right)$ and $\mu^{*}\left(\frac{3}{4}\right)$ that $\int_{0}^{x} t^{1-\mu} \sin \left(t-\frac{3 \pi}{4}\right) \mathrm{d} t$ and $\int_{0}^{x} t^{1-\mu} \sin \left(t-\frac{\pi}{4}\right) \mathrm{d} t$ are non-positive for all $x>0$. As noted before, $\cos \frac{\theta}{4} / \sin \theta$ and $-\sin \frac{\theta}{4} / \sin \theta$ are decreasing on $\left(0, \frac{\pi}{2}\right)$ and thus we obtain that for $0<\theta \leq b \leq \frac{\pi}{2}$

$$
\kappa_{n}(\theta) \geq \frac{1}{\sin b} \int_{0}^{(2 n+1) \theta} \frac{\cos \left(t+\frac{b+\pi}{4}\right)}{t^{1-\mu}} \mathrm{d} t
$$

For $n \geq 3$ this means that in I_{1}

$$
\begin{equation*}
\kappa_{n}(\theta) \geq \frac{1}{\sin \frac{\pi}{7}} \int_{0}^{(2 n+1) \theta} \frac{\cos \left(t+\frac{2 \pi}{7}\right)}{t^{1-\mu}} \mathrm{d} t \geq \frac{1}{\sin \frac{\pi}{7}} \int_{0}^{\pi \cos \left(t+\frac{2 \pi}{7}\right)} \frac{\mathrm{d} t}{t^{1-\mu}} \mathrm{d} \tag{18}
\end{equation*}
$$

where the latter inequality is obtained by minimizing the integral over $0<(2 n+1) \theta \leq \pi$. Likewise, by minimizing the respective integrals over $\pi<(2 n+1) \theta$ and $\frac{7 \pi}{5}<(2 n+1) \bar{\theta}$, we find that for $n \geq 3$

$$
\begin{equation*}
\kappa_{n}(\theta) \geq \frac{1}{\sin \frac{\pi}{5}} \int_{0}^{\frac{6 \pi}{5}} \frac{\cos \left(t+\frac{3 \pi}{10}\right)}{t^{1-\mu}} \mathrm{d} t \quad \text { and } \quad \kappa_{n}(\theta) \geq \frac{1}{\sin \frac{\pi}{3}} \int_{0}^{\frac{7 \pi}{5}} \frac{\cos \left(t+\frac{\pi}{3}\right)}{t^{1-\mu}} \mathrm{d} t \tag{19}
\end{equation*}
$$

in I_{2} and I_{3}, respectively.
Furthermore, it is straightforward to check that with $f(\theta)$ and $c(\theta)$ as defined above the functions $q(\theta)$ and $r(\theta)$ are positive and increasing on $\left(0, \frac{\pi}{2}\right)$. Therefore, using the inequality $2 \sin \frac{\mu \theta}{2} / \sin \theta \geq \mu(0<\theta<\pi)$, we get that for $0<\theta \leq b \leq \frac{\pi}{2}$

$$
\begin{equation*}
2 q(\theta) \frac{\sin \frac{\mu \theta}{2}}{\sin \theta}-r(\theta) s(\theta) \geq \mu q(0)-r(b) s(b) . \tag{20}
\end{equation*}
$$

Finally, if $a=\frac{\pi}{4 n+1}$ and $b=\frac{\pi}{2 n+1}$, then, for $n \geq 3$, we have $b \leq \frac{\pi}{7}, 2 a n \geq \frac{6 \pi}{13}$ and $2 a(n+1) \geq \frac{\pi}{2}$ and by Lemma 1 this, together with (18) and (20), shows that

$$
\begin{aligned}
2^{\mu} \theta^{\mu-1} \Gamma(\mu) U_{n}(\theta) \geq & \frac{1}{\sin \frac{\pi}{7}} \int_{0}^{\pi} \frac{\cos \left(t+\frac{2 \pi}{7}\right)}{t^{1-\mu}} \mathrm{d} t \\
& -\frac{\pi}{7 \sin \frac{\pi}{7}} \frac{1-\mu}{12\left(\frac{6 \pi}{13}\right)^{1-\mu}}-\left(\frac{\pi}{7 \sin \frac{\pi}{7}}\right)^{2} \frac{1-\mu}{9\left(\frac{6 \pi}{13}\right)^{1-\mu}}-\frac{\pi \mu(1-\mu)}{\left(\frac{\pi}{2}\right)^{2-\mu}} \\
& +\Gamma(\mu)\left(\mu q(0)-r\left(\frac{\pi}{7}\right) s\left(\frac{\pi}{7}\right)\right)=0.0214 \ldots
\end{aligned}
$$

for $\theta \in I_{1}$ and $n \geq 3$.
Likewise, if $a=\frac{\pi}{2 n+1}, b=\frac{\pi}{n+2}$ and $n \geq 3$, then $b \leq \frac{\pi}{5}, 2 a n \geq \frac{6 \pi}{7}$ and $2 a(n+1) \geq \pi$, and if $a=\frac{\pi}{n+2}, b=\frac{\pi}{3}$ and $n \geq 3$, then $2 a n \geq \frac{6 \pi}{5}$ and $2 a(n+1) \geq \frac{8 \pi}{5}$. Similar reasoning as before now shows that, for $n \geq 3,2^{\mu} \theta^{\mu-1} \Gamma(\mu) U_{n}(\theta)$ is larger than $0.0157 \ldots$ and $0.0670 \ldots$ in I_{2} and I_{3}, respectively.
2.4. The case $\frac{\pi}{3}<\theta<\frac{5 \pi}{8}$ of (4)

In order to prove this case of (4), recall the well-known inequality, see [3, Lemma 3],

$$
\left|\sum_{k=n}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} 2 k \theta}\right| \leq \frac{a_{n}}{\sin \theta}, \quad(0<\theta<\pi)
$$

which holds for every positive and decreasing sequence $\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$. Therefore, since

$$
U_{n}(\theta) \rightarrow \frac{\cos \frac{1}{4}((1-4 \mu) \theta+(1+2 \mu) \pi)}{(2 \sin \theta)^{\mu}} \quad(0<\theta<\pi)
$$

as $n \rightarrow \infty$ and since the sequence $\left(d_{k}\right)_{k}$ is decreasing, we obtain for $n \geq 3$ and $0<\theta<\pi$

$$
U_{n}(\theta) \geq \frac{\cos \frac{1}{4}((1-4 \mu) \theta+(1+2 \mu) \pi)}{(2 \sin \theta)^{\mu}}-\frac{d_{4}}{\sin \theta}
$$

It is readily verified that the function $\cos \frac{1}{4}((1-4 \mu) \theta+(1+2 \mu) \pi)$ is positive and increasing on $\left(\frac{\pi}{3}, \frac{5 \pi}{8}\right)$ and so it follows from the above that for $n \geq 3$ and $\frac{\pi}{3}<\theta<\frac{5 \pi}{8}$

$$
U_{n}(\theta) \geq \frac{\cos \frac{\pi}{6}(2+\mu)}{2^{\mu}}-\frac{d_{4}}{\sin \frac{\pi}{3}}=0.0344 \ldots
$$

3. Proof of Theorems 1,3 and 4

Setting $h(z)=(1+z) /(1-z)$, the function h^{ρ} is univalent in \mathbb{D} for all $0<\rho \leq 2$. Therefore, if (2) holds for some $\mu \in(0,1]$ and $\rho \in(0,1]$, then the principle of subordination yields that $s_{n}^{\mu} \prec h^{2 \rho}$. Since for $0<\rho \leq \frac{1}{2}$

$$
\left|\arg h^{2 \rho}\right|<\rho \pi \quad \text { and } \quad\left|\arg (1-z)^{2 \rho-1}\right| \leq \frac{\pi}{2}-\rho \pi \quad \text { in } \mathbb{D},
$$

this, in turn, implies the validity of (3) for the same μ and ρ if $0<\rho \leq \frac{1}{2}$. Since $(1-z)^{-\mu} \in$ $\mathcal{S}_{1-\mu / 2}$ and since it is shown in [9] that (3) cannot hold for $\mu>\mu^{*}(\rho)$, it thus follows that in Theorems 1 and 4 the upper bound $\mu^{*}\left(\frac{1}{4}\right)$ is sharp.

By an application of the convolution theory for starlike functions (see, for instance, [12, p. 55]) it has been shown in [9] that the validity of Conjecture 1 for a $\rho \in(0,1]$ implies that for all $f \in \mathcal{S}_{1-\mu / 2}$ with $0<\mu \leq \mu^{*}(\rho)$ and all $n \in \mathbb{N}$

$$
\frac{s_{n}(f, z)}{\Phi_{\rho, \mu} * f} \prec\left(\frac{1+z}{1-z}\right)^{\rho}
$$

and that this, in turn, implies that for all $f \in \mathcal{S}_{1-\mu / 2}$ with $0<\mu \leq \mu^{*}(\rho)$ and all $n \in \mathbb{N}$

$$
\frac{1}{z} s_{n}(f, z) \prec\left(\frac{1+z}{1-z}\right)^{2 \rho}
$$

Hence, Theorems 3 and 4 follow immediately from Theorem 1.
Now, in order to complete the proof of Theorem 1, it only remains to be shown that (2) holds for $\rho=\frac{1}{4}, 0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$ and $n \in \mathbb{N}$ and because of the minimum principle for harmonic
functions this will be done once we have proven that

$$
\begin{equation*}
\operatorname{Re}\left[\left(1-\mathrm{e}^{2 \mathrm{i} \theta}\right)\left(s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{i} \theta}\right)\right)^{4}\right]>0 \tag{21}
\end{equation*}
$$

for $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right), n \in \mathbb{N}$ and $0<\theta<\pi$.
To this end, note first that

$$
\begin{equation*}
T_{n}(\theta):=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} \cos \left(2 k+\frac{1}{4}\right) \theta>0 \quad \text { for } 0 \leq \theta<2 \pi, \quad 0<\mu \leq \mu^{*}\left(\frac{1}{4}\right) \tag{22}
\end{equation*}
$$

and $n \in \mathbb{N}$. For $0 \leq \theta<\pi$ this is a consequence of [5, (6.4)], while for $\pi \leq \theta<2 \pi$ it follows from the fact that $T_{n}(2 \pi-\theta)=U_{n}(\pi-\theta)>0$ (this latter relation also shows the sharpness of the bound $\mu^{*}\left(\frac{1}{4}\right)$ for the positivity of the T_{n} in $[0,2 \pi)$). We also have

$$
\begin{equation*}
V_{n}(\theta):=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} \cos \left(2 k \theta+\frac{\pi}{4}\right)>0 \quad \text { for } \theta \in \mathbb{R}, 0<\mu \leq \mu^{*}\left(\frac{1}{4}\right) \tag{23}
\end{equation*}
$$

and $n \in \mathbb{N}$. Applying elementary trigonometric identities (e.t.i.) we get

$$
V_{n}(\theta)=\cos \frac{\theta}{4} U_{n}(\theta)+\sin \frac{\theta}{4} T_{n}(\pi-\theta),
$$

and thus (23) follows from the positivity of the U_{n} and T_{n} in $[0, \pi)$. The sharpness of $\mu^{*}\left(\frac{1}{4}\right)$ for the positivity of the V_{n} in \mathbb{R} can be seen by an asymptotic analysis similar to the one presented in the proof of [9, Lemma 1].

Now, in order to prove (21), set $s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{ii} \mathrm{\theta}}\right)=: C_{n}(\theta)+\mathrm{i} S_{n}(\theta)$, i.e.

$$
C_{n}(\theta):=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} \cos 2 k \theta \quad \text { and } \quad S_{n}(\theta):=\sum_{k=0}^{n} \frac{(\mu)_{k}}{k!} \sin 2 k \theta,
$$

for $0<\mu \leq 1, \theta \in \mathbb{R}$ and $n \in \mathbb{N}$. Then e.t.i. and (23) show that

$$
\begin{align*}
X_{n}(\theta):=C_{n}(\theta)^{2}-S_{n}(\theta)^{2} & =\left(C_{n}(\theta)+S_{n}(\theta)\right)\left(C_{n}(\theta)-S_{n}(\theta)\right) \\
& =2 V_{n}(\theta) \cdot V_{n}(\pi-\theta)>0 \tag{24}
\end{align*}
$$

for $\theta \in \mathbb{R}, 0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$ and $n \in \mathbb{N}$ (in particular, since $\operatorname{Re}\left(s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{i} \theta}\right)\right)^{2}=C_{n}^{2}(\theta)-S_{n}^{2}(\theta)$, we see that (6) holds). Setting $Z_{n}(\theta):=C_{n}(\theta) S_{n}(\theta) / X_{n}(\theta)$ we find that the left-hand side of (21) is equal to

$$
2 \sin \theta X_{n}^{2}(\theta) p\left(Z_{n}(\theta)\right), \quad \text { where } p(x):=-4 x^{2} \sin \theta+4 x \cos \theta+\sin \theta
$$

For $0<\theta<\pi$ we have $p(x)>0$ if, and only if,

$$
-1+\cos \theta<2 x \sin \theta<1+\cos \theta,
$$

and thus, $\operatorname{since} \sin (\pi-\theta) Z_{n}(\pi-\theta)=-\sin \theta Z_{n}(\theta)$ and $\cos (\pi-\theta)=-\cos \theta$, it follows that (21) holds if, and only if,

$$
\begin{equation*}
2 \sin \theta Z_{n}(\theta)<1+\cos \theta \quad \text { for } 0<\theta<\pi \tag{25}
\end{equation*}
$$

Because of (24) the inequality (25) is equivalent to

$$
\begin{aligned}
0 & <(1+\cos \theta)\left(C_{n}^{2}(\theta)-S_{n}^{2}(\theta)\right)-2 \sin \theta C_{n}(\theta) S_{n}(\theta) \\
& =\operatorname{Re}\left[\left(1+\mathrm{e}^{\mathrm{i} \theta}\right)\left(s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{i} \theta}\right)\right)^{2}\right]=2 \cos \frac{\theta}{2} \operatorname{Re}\left[\left(\mathrm{e}^{\mathrm{i} \theta / 4} s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{i} \theta}\right)\right)^{2}\right]
\end{aligned}
$$

for $0<\theta<\pi$. E.t.i. show that

$$
\operatorname{Re}\left[\left(\mathrm{e}^{\mathrm{i} \theta / 4} s_{n}^{\mu}\left(\mathrm{e}^{2 \mathrm{i} \theta}\right)\right)^{2}\right]=2 U_{n}(\theta) \cdot T_{n}(\pi-\theta)
$$

for $0<\theta<\pi$. By Theorem 2 and (22) the product $U_{n}(\theta) T_{n}(\pi-\theta)$ is positive for $0<\theta<\pi$, $0<\mu \leq \mu^{*}\left(\frac{1}{4}\right)$ and $n \in \mathbb{N}$. Hence, (21) holds for the required set of parameters. The proof of Theorem 1 is thus complete.

4. Proof of Theorem 5

We will first show that $\xi^{\prime}(x)$ cannot be completely monotonic on $(0, \infty)$ when $0<\mu<1 / 3$. To see this, we observe that

$$
\begin{equation*}
\xi^{\prime}(x)=1-\frac{\Gamma(x+\mu)}{\Gamma(x+1)} x^{1-\mu}(x(\psi(x+\mu)-\psi(x+1))+2-\mu) \tag{26}
\end{equation*}
$$

where $\psi(x):=\Gamma^{\prime}(x) / \Gamma(x)$, and therefore $\xi^{\prime}(0)=1$. On the other hand, using the asymptotic formulae

$$
\begin{align*}
& \frac{\Gamma(x+\mu)}{\Gamma(x+1)} x^{1-\mu}=1-\frac{\mu(1-\mu)}{2 x}+\frac{\mu(1-\mu)(2-\mu)(3 \mu-1)}{24 x^{2}}+O\left(\frac{1}{x^{3}}\right), \tag{27}\\
& \psi(x+\mu)-\psi(x+1)=\frac{\mu-1}{x}+\frac{\mu(1-\mu)}{2 x^{2}}+\frac{\mu(1-\mu)(1-2 \mu)}{6 x^{3}}+O\left(\frac{1}{x^{4}}\right), \tag{28}
\end{align*}
$$

as $x \rightarrow \infty$ (cf. [1, p. 257]; the second formula follows by considering $\frac{\mathrm{d}}{\mathrm{d} x} \log (\Gamma(x+\mu) / \Gamma(x+1))$ and applying the first one), we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(x^{2} \xi^{\prime}(x)\right)=\frac{\mu(1-\mu)(2-\mu)(3 \mu-1)}{24} \tag{29}
\end{equation*}
$$

which is negative when $0<\mu<1 / 3$. Thus, for this range of μ, the function $\xi^{\prime}(x)$ changes sign on $(0, \infty)$.

Now, for $0<\alpha<1$, consider the function

$$
f(x):=\frac{\mathrm{e}^{\alpha x}-1}{\mathrm{e}^{x}-1} .
$$

The convexity of this function on $(0, \infty)$ was crucial in the proof of [6, Thm. 1(i)]. In fact, it is proved in [6] that the function $f(x)$ is strictly decreasing on $(0, \infty)$ when $0<\alpha<1$. For those α it is convex on $(0, \infty)$ if and only if $0<\alpha \leq 1 / 2$. See [6, Lemma 1, (1)] (to see that the condition $0<\alpha \leq 1 / 2$ is necessary, observe that, by (30) and (33) below, $\left.f^{\prime \prime}(0)=\alpha(\alpha-1)(2 \alpha-1)\right)$. However, in the case $1 / 2<\alpha \leq 2 / 3$ we have the following:

Lemma 2. Suppose that $1 / 2<\alpha \leq 2 / 3$. Then
(i) $f^{\prime \prime}(x)>0$, for $x \in[1, \infty)$.
(ii) $f^{\prime \prime \prime}(x)>0$, for $x \in[0,1]$.

Proof. We have

$$
f^{\prime \prime}(x)=\frac{1}{\left(\mathrm{e}^{x}-1\right)^{3}}\left[(\alpha-1)^{2} \mathrm{e}^{(\alpha+2) x}+\left(-2 \alpha^{2}+2 \alpha+1\right) \mathrm{e}^{(\alpha+1) x}+\alpha^{2} \mathrm{e}^{\alpha x}-\mathrm{e}^{2 x}-\mathrm{e}^{x}\right] .
$$

Thus

$$
\begin{equation*}
f^{\prime \prime}(x)=\left(\frac{x}{\mathrm{e}^{x}-1}\right)^{3} \sum_{n=3}^{\infty} \frac{P_{n}(\alpha)}{n!} x^{n-3}, \tag{30}
\end{equation*}
$$

where

$$
P_{n}(\alpha):=(\alpha-1)^{2}(\alpha+2)^{n}+\left(-2 \alpha^{2}+2 \alpha+1\right)(\alpha+1)^{n}+\alpha^{n+2}-2^{n}-1, \quad n \geq 3
$$

(cf. $[6,(2.1)])$. We first prove that

$$
\begin{equation*}
P_{n}(\alpha)>0, \quad \text { for all } n \geq 5 \text { when } 1 / 2 \leq \alpha \leq 2 / 3 \tag{31}
\end{equation*}
$$

Clearly,

$$
P_{n}(\alpha)>Q_{n}(\alpha),
$$

where

$$
Q_{n}(\alpha):=(\alpha-1)^{2}(\alpha+2)^{n}-2^{n} .
$$

We shall show that

$$
\begin{equation*}
Q_{n}(\alpha)>0, \quad \text { for all } n \geq 8,1 / 2 \leq \alpha \leq 2 / 3 . \tag{32}
\end{equation*}
$$

First,

$$
Q_{n}(\alpha) \geq(\alpha-1)^{2}\left(\frac{5}{2}\right)^{n}-2^{n} \geq \frac{1}{9}\left(\frac{5}{2}\right)^{n}-2^{n}>0, \quad n \geq 10
$$

On the other hand, since

$$
Q_{n}^{\prime}(\alpha)=(\alpha+2)^{n-1}(\alpha-1)((n+2) \alpha-n+4)
$$

$Q_{n}^{\prime}(\alpha)<0$, for $5 \leq n \leq 9$. Since $Q_{8}(2 / 3)=28.1236 \ldots$ and $Q_{9}(2 / 3)=245.6630 \ldots$, the proof of (32) is complete. In order to prove (31), first observe that $P_{7}(\alpha)>Q_{7}(\alpha)+q(\alpha)$, where $q(\alpha):=\left(-2 \alpha^{2}+2 \alpha+1\right)(\alpha+1)^{7}-1$. It is easy to see that $q(\alpha)$ is an increasing function of α and therefore $P_{7}(\alpha)>Q_{7}(2 / 3)+q(1 / 2)=3.1752 \ldots$. Also,

$$
\begin{aligned}
& P_{5}(\alpha)=\alpha(\alpha-1)\left(12 \alpha^{3}+27 \alpha^{2}+7 \alpha-23\right) \\
& P_{6}(\alpha)=\alpha(\alpha-1)\left(20 \alpha^{4}+68 \alpha^{3}+73 \alpha^{2}-17 \alpha-72\right)
\end{aligned}
$$

A straightforward computation shows that $P_{5}(\alpha)>0$ and $P_{6}(\alpha)>0$ for $1 / 2 \leq \alpha \leq 2 / 3$ and therefore the proof of (31) is complete.

Note that

$$
\begin{equation*}
P_{3}(\alpha)=\alpha(\alpha-1)(2 \alpha-1)<0, \quad 1 / 2<\alpha \leq 2 / 3 \tag{33}
\end{equation*}
$$

while the polynomial

$$
\begin{equation*}
P_{4}(\alpha)=6 \alpha(\alpha-1)\left(\alpha^{2}+\alpha-1\right) \tag{34}
\end{equation*}
$$

has a unique root $\alpha_{0}:=\frac{-1+\sqrt{5}}{2}=0.618 \ldots$ in the interval $(1 / 2,2 / 3)$ so that $P_{4}(\alpha)>0$ for $1 / 2<\alpha<\alpha_{0}$ and $P_{4}(\alpha)<0$ for $\alpha_{0}<\alpha<2 / 3$.

In order to prove part (i) of the lemma we use (30) and set

$$
S(x):=\sum_{n=3}^{\infty} \frac{P_{n}(\alpha)}{n!} x^{n-3} .
$$

It follows from (31) that $S^{\prime \prime}(x)>0$ for $x>0$ and $1 / 2 \leq \alpha \leq 2 / 3$. Therefore $S^{\prime}(x)$ is a strictly increasing function of x in $[1, \infty)$ and hence

$$
\begin{aligned}
S^{\prime}(x) & \geq S^{\prime}(1)=\sum_{n=4}^{\infty}(n-3) \frac{P_{n}(\alpha)}{n!}>\frac{P_{4}(\alpha)}{4!}+2 \frac{P_{5}(\alpha)}{5!} \\
& =\frac{1}{30} \alpha(\alpha-1)\left(6 \alpha^{3}+21 \alpha^{2}+11 \alpha-19\right)>0,
\end{aligned}
$$

for $1 / 2 \leq \alpha \leq 2 / 3$. $S(x)$ is thus strictly increasing on $[1, \infty)$ and consequently

$$
\begin{aligned}
S(x) & \geq S(1)=\sum_{n=3}^{\infty} \frac{P_{n}(\alpha)}{n!}>\sum_{k=3}^{7} \frac{P_{k}(\alpha)}{k!} \\
& =\frac{1}{5040} \alpha(\alpha-1)\left(30 \alpha^{5}+275 \alpha^{4}+1220 \alpha^{3}+3040 \alpha^{2}+2977 \alpha-3771\right)>0,
\end{aligned}
$$

for $1 / 2 \leq \alpha \leq 2 / 3$. This in combination with (30) completes the proof of part (i).
We now turn to the proof of (ii). Differentiating (30) we see that inequality $f^{\prime \prime \prime}(x)>0$ is equivalent to

$$
\begin{equation*}
3 \frac{\rho^{\prime}(x)}{\rho(x)} S(x)+S^{\prime}(x)>0 \tag{35}
\end{equation*}
$$

where $S(x)$ as above and

$$
\rho(x)=\frac{x}{\mathrm{e}^{x}-1} .
$$

Inequality (35) is true for $x=0$, because it reduces to

$$
P_{4}(\alpha)-6 P_{3}(\alpha)=6 \alpha^{2}(\alpha-1)^{2}>0 .
$$

Assume that $0<x \leq 1$. Writing

$$
\frac{\rho^{\prime}(x)}{\rho(x)}=\frac{1}{x}\left(1-\frac{x}{\mathrm{e}^{x}-1}\right)-1
$$

and using the known inequalities

$$
1-\frac{x}{2}<\frac{x}{\mathrm{e}^{x}-1}<1-\frac{x}{2}+\frac{x^{2}}{12}
$$

(see [7] for a more general result), we get

$$
\begin{equation*}
-\frac{1}{2}-\frac{x}{12}<\frac{\rho^{\prime}(x)}{\rho(x)}<-\frac{1}{2} . \tag{36}
\end{equation*}
$$

Let $1 / 2 \leq \alpha \leq \alpha_{0}$, where $\alpha_{0}=\frac{-1+\sqrt{5}}{2}=0.618 \ldots$ is the unique root in the interval $(1 / 2,2 / 3)$ of the polynomial $P_{4}(\alpha)$. Since in this case $P_{4}(\alpha) \geq 0, P_{3}(\alpha) \leq 0$, we obtain, using (31) and (36),

$$
\begin{equation*}
3 \frac{\rho^{\prime}(x)}{\rho(x)} S(x)+S^{\prime}(x)>-\left(\frac{3 x}{2}+\frac{x^{2}}{4}\right) \sum_{k=4}^{\infty} \frac{P_{k}(\alpha)}{k!} x^{k-4}+\sum_{k=4}^{\infty} \frac{P_{k}(\alpha)}{k!}(k-3) x^{k-4} \tag{37}
\end{equation*}
$$

When $0<x \leq x_{0}:=-3+\sqrt{13}=0.6055 \ldots$ we have $\frac{3 x}{2}+\frac{x^{2}}{4} \leq 1$. Hence, from (37) we get

$$
\begin{equation*}
3 \frac{\rho^{\prime}(x)}{\rho(x)} S(x)+S^{\prime}(x)>\sum_{k=5}^{\infty} \frac{P_{k}(\alpha)}{k!}(k-4) x^{k-4}>0 \tag{38}
\end{equation*}
$$

and the last inequality is obtained using once more (31). When $x_{0}<x \leq 1$ we obviously have $\frac{3 x}{2}+\frac{x^{2}}{4} \leq \frac{7}{4}$ and thus, because of (37) and (31), we get

$$
\begin{aligned}
3 \frac{\rho^{\prime}(x)}{\rho(x)} S(x)+S^{\prime}(x)> & -\frac{3}{4} \frac{P_{4}(\alpha)}{4!}+\sum_{k=5}^{\infty}\left(k-\frac{19}{4}\right) \frac{P_{k}(\alpha)}{k!} x^{k-4} \\
> & -\frac{3}{4} \frac{P_{4}(\alpha)}{4!}+\frac{1}{4} \frac{P_{5}(\alpha)}{5!} x+\frac{5}{4} \frac{P_{6}(\alpha)}{6!} x^{2} \\
> & -\frac{3}{4} \frac{P_{4}(\alpha)}{4!}+\frac{1}{4} \frac{P_{5}(\alpha)}{5!} x_{0}+\frac{5}{4} \frac{P_{6}(\alpha)}{6!} x_{0}^{2} \\
= & \frac{1}{1440}(11-3 \sqrt{13}) \alpha(1-\alpha)\left(-100 \alpha^{4}-(394+18 \sqrt{13}) \alpha^{3}\right. \\
& \left.+(256+162 \sqrt{13}) \alpha^{2}+(796+192 \sqrt{13}) \alpha-279-168 \sqrt{13}\right) .
\end{aligned}
$$

Since it is straightforward to check that the last expression is positive for $1 / 2 \leq \alpha \leq \alpha_{0}$, this and (38) establish (35) in the case where $1 / 2 \leq \alpha \leq \alpha_{0}$.

Next, suppose that $\alpha_{0}<\alpha \leq 2 / 3$. In this case $P_{4}(\alpha)<0$. We have

$$
\begin{align*}
3 \frac{\rho^{\prime}(x)}{\rho(x)} S(x)+S^{\prime}(x)= & 3 \frac{\rho^{\prime}(x)}{\rho(x)}\left(\frac{P_{3}(\alpha)}{3!}+\frac{P_{4}(\alpha)}{4!} x\right)+\frac{P_{4}(\alpha)}{4!} \\
& +3 \frac{\rho^{\prime}(x)}{\rho(x)} \sum_{k=5}^{\infty} \frac{P_{k}(\alpha)}{k!} x^{k-3}+\sum_{k=5}^{\infty} \frac{P_{k}(\alpha)}{k!}(k-3) x^{k-4} \tag{39}
\end{align*}
$$

Since $P_{3}(\alpha)<0$, using the second inequality of (36) we obtain

$$
\begin{equation*}
3 \frac{\rho^{\prime}(x)}{\rho(x)}\left(\frac{P_{3}(\alpha)}{3!}+\frac{P_{4}(\alpha)}{4!} x\right)+\frac{P_{4}(\alpha)}{4!}>-\frac{P_{3}(\alpha)}{4}+\frac{P_{4}(\alpha)}{24}=\frac{1}{4} \alpha^{2}(1-\alpha)^{2}>0 . \tag{40}
\end{equation*}
$$

On the other hand, using the first inequality of (36) together with (31), we obtain

$$
\begin{equation*}
3 \frac{\rho^{\prime}(x)}{\rho(x)} \sum_{k=5}^{\infty} \frac{P_{k}(\alpha)}{k!} x^{k-3}+\sum_{k=5}^{\infty} \frac{P_{k}(\alpha)}{k!}(k-3) x^{k-4}>\sum_{k=5}^{\infty}\left(k-\frac{19}{4}\right) \frac{P_{k}(\alpha)}{k!} x^{k-4}>0 \tag{41}
\end{equation*}
$$

Combining (40) with (41) we deduce that the expression in (39) is positive and this establishes (35) in the case where $\alpha_{0}<\alpha \leq 2 / 3$.

The proof of Lemma 2 is complete.

We can now give a proof of Theorem 5 .
First observe that

$$
\begin{equation*}
\xi^{\prime \prime}(x)=-\frac{\Gamma(x+\mu)}{\Gamma(x+1)} x^{2-\mu} \Phi(x) \tag{42}
\end{equation*}
$$

where

$$
\Phi(x):=\left(\psi(x+\mu)-\psi(x+1)+\frac{2-\mu}{x}\right)^{2}+\left(\psi(x+\mu)-\psi(x+1)+\frac{2-\mu}{x}\right)^{\prime}
$$

Then, as in the proof of [6, Thm. 1] we find that

$$
\begin{equation*}
\Phi(x)=\int_{0}^{\infty} \mathrm{e}^{-x u} F(u) \mathrm{d} u, \tag{43}
\end{equation*}
$$

where, for $u>0$,

$$
F(u):=\int_{0}^{u} \sigma(u-v) \sigma(v) \mathrm{d} v-u \sigma(u)
$$

and

$$
\sigma(u):=2-\mu-\phi(u)
$$

with

$$
\phi(u):=\frac{\mathrm{e}^{(1-\mu) u}-1}{\mathrm{e}^{u}-1}, \quad \phi(0)=1-\mu .
$$

Then

$$
F^{\prime}(u)=\int_{0}^{u} \sigma^{\prime}(u-v) \sigma(v) \mathrm{d} v-u \sigma^{\prime}(u)
$$

and

$$
\begin{equation*}
F^{\prime \prime}(u)=u \phi^{\prime \prime}(u)+\int_{0}^{u} \phi^{\prime}(u-v) \phi^{\prime}(v) \mathrm{d} v \tag{44}
\end{equation*}
$$

It is shown in [6, Lemma 1] that when $0<\mu<1$ we have $\phi^{\prime}(u)<0$ for $u \in[0, \infty)$. In addition, when $1 / 2 \leq \mu<1$ we have $\phi^{\prime \prime}(u) \geq 0$ for $u \in[0, \infty)$. In view of (44), the combination of these results implies that $F^{\prime \prime}(u)>0$ for $u>0$.

Using Lemma 2, we shall prove that for $1 / 3 \leq \mu<1 / 2$, we also have $F^{\prime \prime}(u)>0$ for $u>0$, although, for this range of μ the function $\phi^{\prime \prime}(u)$ assumes negative values. In fact,

$$
\phi^{\prime \prime}(0)=\frac{1}{6} \mu(1-\mu)(2 \mu-1)<0 .
$$

Note also that

$$
\phi^{\prime}(0)=-\frac{1}{2} \mu(1-\mu)<0 .
$$

It follows from Lemma 2, that when $1 / 3 \leq \mu<1 / 2$ the function $\phi^{\prime \prime}(u)$ has a unique root in the interval $(0,1)$ which we denote by ω_{μ}. Clearly, $\phi^{\prime \prime}(u) \geq 0$ for $u \in\left[\omega_{\mu}, \infty\right)$ and therefore, by (44), $F^{\prime \prime}(u)>0$ for $u \in\left[\omega_{\mu}, \infty\right)$.

Suppose that $0<u<\omega_{\mu}$. Consider the function of v

$$
\delta(v):=\phi^{\prime}(u-v) \phi^{\prime}(v), \quad 0 \leq v \leq u<\omega_{\mu}<1
$$

Differentiating with respect to v we get

$$
\delta^{\prime}(v)=-\phi^{\prime \prime}(u-v) \phi^{\prime}(v)+\phi^{\prime}(u-v) \phi^{\prime \prime}(v)
$$

and also

$$
\delta^{\prime \prime}(v)=\phi^{\prime \prime \prime}(u-v) \phi^{\prime}(v)-2 \phi^{\prime \prime}(u-v) \phi^{\prime \prime}(v)+\phi^{\prime}(u-v) \phi^{\prime \prime \prime}(v) .
$$

Lemma 2 ensures that $\delta^{\prime \prime}(v)<0$ when $v \in[0, u]$ with $0<u<\omega_{\mu}$. Therefore, the function $\delta(v)$ is concave when $v \in[0, u]$ and thus we obtain the estimate

$$
\begin{equation*}
\delta(v) \geq \phi^{\prime}(0) \phi^{\prime}(u), \quad v \in[0, u] . \tag{45}
\end{equation*}
$$

It is perhaps of interest to note that the function $\delta(v)$ has a graph that is symmetric with respect to line $v=u / 2$ and that $\delta(v)$ is increasing on $[0, u / 2]$ and decreasing on $[u / 2, u]$ and therefore the estimate (45) can also be obtained in this way.

It follows from (44) and (45) that

$$
\begin{equation*}
F^{\prime \prime}(u) \geq u\left[\phi^{\prime \prime}(u)+\phi^{\prime}(0) \phi^{\prime}(u)\right] \tag{46}
\end{equation*}
$$

for $0<u<\omega_{\mu}$. From Lemma 2 we deduce that $\phi^{\prime \prime \prime}(u)+\phi^{\prime}(0) \phi^{\prime \prime}(u)>0$ for $u \in\left(0, \omega_{\mu}\right)$. Therefore $\phi^{\prime \prime}(u)+\phi^{\prime}(0) \phi^{\prime}(u)$ increases in this interval, and hence

$$
\begin{equation*}
\phi^{\prime \prime}(u)+\phi^{\prime}(0) \phi^{\prime}(u) \geq \phi^{\prime \prime}(0)+\phi^{\prime}(0)^{2}=\frac{1}{12} \mu(1-\mu)(2-\mu)(3 \mu-1) \geq 0, \tag{47}
\end{equation*}
$$

for $1 / 3 \leq \mu<1$.
It follows from (46) and (47) that $F^{\prime \prime}(u)>0$ for $0<u<\omega_{\mu}$ and thus this inequality holds for all $u>0$. Hence the function $F(u)$ satisfies the following: $F^{\prime \prime}(u)>0, F^{\prime}(u)>0=F^{\prime}(0)$ and $F(u)>F(0)=0$. Taking into consideration (43), it follows from [6, Lemma 2] (see also [8, Thm. 1.3] for a more general result), that the function $x^{2} \Phi(x)$ is completely monotonic on $(0, \infty)$.

Because of (42) we have

$$
-\xi^{\prime \prime}(x)=\frac{\Gamma(x+\mu)}{\Gamma(x+1)} \frac{1}{x^{\mu}} x^{2} \Phi(x)
$$

It is straightforward to check that $x^{-\mu}$ is completely monotonic on $(0, \infty)$ for $\mu>0$; using Bernstein's Theorem (cf. Section 1) and the well-known formula (cf. [2, p. 615])

$$
\frac{\Gamma(x+a)}{\Gamma(x+b)}=\frac{1}{\Gamma(b-a)} \int_{0}^{\infty} \mathrm{e}^{-x u} \mathrm{e}^{-a u}\left(1-\mathrm{e}^{-u}\right)^{b-a-1} \mathrm{~d} u, \quad b>a
$$

we see that also $\Gamma(x+\mu) / \Gamma(x+1)$ is completely monotonic. Since it follows readily from the Leibniz product rule that the product of two completely monotonic functions is again completely monotonic, we have thus shown that the function $-\xi^{\prime \prime}(x)$ is completely monotonic on $(0, \infty)$. Finally, from (29) we get $\lim _{x \rightarrow \infty} \xi^{\prime}(x)=0$, and thus $\xi^{\prime}(x)>0$ for $x>0$. The relation (9) shows that the function $\xi^{\prime}(x)$ is completely monotonic on $(0, \infty)$.

Thus the function $\xi(x)$ is strictly increasing and concave on $(0, \infty)$ and, by (27),

$$
\lim _{x \rightarrow \infty} \xi(x)=\frac{\mu(1-\mu)}{2}
$$

which gives the second inequality of (8).
This completes the proof of Theorem 5.
As a consequence of the above we also have the following remarkable result.

Corollary 2. Let

$$
\Phi(x):=\left(\psi(x+\mu)-\psi(x+1)+\frac{2-\mu}{x}\right)^{2}+\left(\psi(x+\mu)-\psi(x+1)+\frac{2-\mu}{x}\right)^{\prime} .
$$

The function $x^{2} \Phi(x)$ is completely monotonic on $(0, \infty)$ if and only if $1 / 3 \leq \mu<1$.
Proof. The proof is contained in the proof of Theorem 5. In order to see that the result is sharp with respect to μ, observe that by (28),

$$
\lim _{x \rightarrow \infty} x^{4} \Phi(x)=\frac{1}{12} \mu(1-\mu)(2-\mu)(3 \mu-1)<0
$$

for $0<\mu<1 / 3$, while a direct calculation yields

$$
\lim _{x \rightarrow 0^{+}} x^{2} \Phi(x)=(1-\mu)(2-\mu)>0
$$

for $0<\mu<1$. Therefore the function $x^{2} \Phi(x)$ changes sign on $(0, \infty)$ when $0<\mu<1 / 3$.

Acknowledgment

This research was supported by a grant (No. 3411-21041) from the Leventis Foundation.

References

[1] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
[2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
[3] R. Askey, J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1) (1974) 295-307.
[4] J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif á la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939) 96-111.
[5] S. Koumandos, An extension of Vietoris's inequalities, Ramanujan J. 14 (1) (2007) 1-38.
[6] S. Koumandos, Monotonicity of some functions involving the gamma and psi functions, Math. Comp. 77 (264) (2008) 2261-2275.
[7] S. Koumandos, Remarks on some completely monotonic functions, J. Math. Anal. Appl. 324 (2) (2006) 1458-1461.
[8] S. Koumandos, H.L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. 355 (1) (2009) 33-40.
[9] S. Koumandos, S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions, J. Approx. Theory 149 (1) (2007) 42-58.
[10] S. Koumandos, S. Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx. 23 (2) (2006) 197-210.
[11] C. Pommerenke, Univalent Functions. Vandenhoeck and Ruprecht, Göttingen, 1975.
[12] S. Ruscheweyh, Convolutions in Geometric Function Theory, in: Seminaire de Math. Sup., vol. 83, Les Presses de l'Universitè de Montrèal, 1982.
[13] H. van Haeringen, Completely monotonic and related functions, J. Math. Anal. Appl. 204 (2) (1996) 389-408.
[14] L. Vietoris, Über das Vorzeichen gewisser trigonometrischer summen, S.-B. Öster. Akad. Wiss. 167 (1958) 125-135; Teil II: Anzeiger Öster. Akad. Wiss. 167 (1959) 192-193.
[15] D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.

[^0]: * Corresponding author.

 E-mail addresses: skoumand@ucy.ac.cy (S. Koumandos), martin@ucy.ac.cy (M. Lamprecht).

