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Robust Approximation of Singularly Perturbed
Delay Differential Equations

by the hp Finite Element Method
Serge Nicaise · Christos Xenophontos

Abstract— We consider the finite element approximation of the solution to a singularly
perturbed second order differential equation with a constant delay. The boundary value
problem can be cast as a singularly perturbed transmission problem, whose solution
may be decomposed into a smooth part, a boundary layer part, an interior/interface
layer part and a remainder. Upon discussing the regularity of each component, we
show that under the assumption of analytic input data, the hp version of the finite
element method on an appropriately designed mesh yields robust exponential conver-
gence rates. Numerical results illustrating the theory are also included.
2010 Mathematical subject classification: 65L11, 65L60, 65L70.
Keywords: Singularly Perturbed Delay Differential Equation, hp Finite Element
Method, Boundary Layers.

1. Introduction

We consider the approximation of the solution to a singularly perturbed second order dif-
ferential equation with a constant delay. While delay differential equations (DDEs) and
their numerical approximation have received much attention (see, e.g., [3] and the references
therein), singularly perturbed DDEs (SPDDEs) have not. Recently, some articles that start
to fill this void have appeared in the literature, such as [2] and [7], in which second order
SPDDEs are approximated by finite differences on so-called Shishkin meshes [21]. See also
[8] for a Taylor series expansion approach, coupled with finite differences. We also mention
the articles [1, 22] which deal with first order SPDDEs and their numerical approximation.
It is well known that high order p and hp finite element methods (FEMs) yield excellent
results in a variety of settings (see, e.g., [20] and the references therein). Nevertheless, such
methods have not been applied to SPDDEs, as of yet, and this is the purpose of this article:
to apply an hp FEM to an SPDDE and to prove its robustness and exponential rate of
convergence.

The analogous non-delay singularly perturbed problem has been considered by many
authors (see, e.g., the books [14, 15, 19] and the references therein). From the point of
view of hp FEMs, the monograph [12] gives a complete mathematical treatise along with
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specific guidelines for the construction of the approximation with exponential convergence
properties. By extending the known results for non-delay problems to the present case,
we are able to prove that the hp version of the FEM on carefully designed meshes, yields a
robust approximation to the solution of SPDDEs, at an exponential rate, independently of the
singular perturbation parameter. This is achieved by first writing the SPDDE as a singularly
perturbed transmission problem and then using an asymptotic expansion for its solution,
that includes a smooth part, a boundary layer part, an interior/interface layer part and a
remainder (that is exponentially small). The regularity of each term in the decomposition
is studied, in that we present estimates that are explicit in both the singular perturbation
parameter, as well as the order of differentiation. This information is then utilized in the
approximation scheme to prove that an hp FEM on so-called spectral boundary layer meshes
(cf. [13]) converges exponentially as the degree p of the approximation is increased, when the
error is measured in the natural energy norm associated with the boundary value problem.

The rest of the article is organized as follows: In Section 2 we describe the model problem
and discuss the typical phenomena. In Section 3 we present the decomposition for the
solution and the regularity of each term. Section 4 presents our main approximation result
and Section 5 presents the results of some numerical computations verifying our analysis.
We end with some conclusions in Section 6.

In what follows, the space of square-integrable functions on an interval Ω ⊂ R will be
denoted by L2(Ω), with associated inner product

(u, v)Ω :=

∫
Ω

uv.

We will also utilize the usual Sobolev space notation Hk(Ω) to denote the space of functions
on Ω with 0, 1, 2, . . . , k generalized derivatives in L2(Ω), equipped with norm and seminorm
‖·‖k,Ω and |·|k,Ω, respectively. We will use the space

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0},

where ∂Ω denotes the boundary of Ω. Finally, the letter C will be used to denote a generic
positive constant, independent of any discretization or singular perturbation parameters and
possibly having different values in each occurrence.

2. The Model Problem

Consider solving the following problem: Find uε such that{
−ε2(uε)′′(x) + a(x)uε(x) + b(x)uε(x− 1) = f(x), x ∈ Ω = (0, 2),

uε(x) = φ(x), x ∈ (−1, 0), u(2) = L,
(1)

where a, b, f are given smooth functions on Ω = [0, 2], while φ is smooth in [−1, 0], satisfying

a(x) > α > 0, β0 6 b(x) 6 β < 0, α +
β0

2
> η > 0, ∀x ∈ [0, 2], (2)

for some constants α, β0, β, η. The parameter ε ∈ (0, 1] and the constant L in (1) are also
given. Delay differential equations arise in a variety of scientific fields, such as biology, ecol-
ogy, medicine and physics (see, e.g., [4, 6]). Singularly perturbed delay differential equations,
like (1), arise for example, in variational problems from control theory [9].
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Robust Approximation of SPDDEs 23

Figure 1. Exact solution uε(x) when ε = 0.04.

If we let Ω− = (0, 1),Ω+ = (1, 2) and denote by uε− (respectively uε+) the restriction of
uε to Ω− (respectively Ω+), the above problem is equivalent to the following: Find (uε−, u

ε
+)

such that 
−ε2(uε−)′′(x) + a(x)uε−(x) = f(x)− b(x)φ(x− 1), x ∈ Ω−,

−ε2(uε+)′′(x) + a(x)uε+(x) + b(x)uε−(x− 1) = f(x), x ∈ Ω+,

uε−(0) = φ(0), uε+(2) = L,

uε−(1) = uε+(1), (uε−)′(1) = (uε+)′(1).

(3)

Without loss of generality we assume that

φ(0) = 0 and L = 0.

The formal limit problem of (3), as ε→ 0, is{
a(x)u0

−(x) = f(x)− b(x)φ(x− 1), x ∈ Ω−,

a(x)u0
+(x) + b(x)u0

−(x− 1) = f(x), x ∈ Ω+,

and, in general, the solution uε will exhibit boundary/interior layers to the right of x = 0,
on both sides of x = 1 and to the left of x = 2 (since there is no reason that u0

± given above
satisfy u0

−(0) = φ(0), u0
+(2) = L, u0

−(1) = u0
+(1) and (u0

−)′(1) = (u0
+)′(1)). This is illustrated

in Figure 1, where the exact solution uε is shown, in the case a(x) = 5, b(x) = −1, f(x) = 1,
L = 0, φ(x) = x2, ε = 0.04.

Since singularly perturbed transmission problems (and their numerical approximation)
have been studied in [16] (see also [10]), we wish to adopt the strategy presented in [16] for
this problem. In particular, we expect that the hp finite element method on the spectral
boundary layer mesh [13]

∆ = {0, κpε, 1− κpε, 1, 1 + κpε, 2− κpε, 2} (4)
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κpε 1− κpε 1 + κpε 2− κpε

2

Figure 2. The spectral boundary layer mesh ∆, given by (4).

(see Figure 2) will yield robust exponential convergence – this will be shown in Section 4.
(In (4), κ ∈ R+ and p is the degree of the approximating polynomials.)

In addition to (2), we assume that the functions a, b, f are analytic on Ω, φ is analytic in
[−1, 0], and that there exist constants C,Ka, Kb, Kf , Kφ > 0 such that for any n = 0, 1, 2, . . .{

‖a(n)‖L∞(Ω) 6 CKn
an!, ‖b(n)‖L∞(Ω) 6 CKn

b n!,

‖f (n)‖L∞(Ω) 6 CKn
f n!, ‖φ(n)‖L∞(−1,0) 6 CKn

φn!.
(5)

We begin by casting (3) into a variational formulation that reads: Find uε = (uε−, u
ε
+) ∈

H1
0 (Ω) such that

B(uε, v) = F (v) ∀v± ∈ H1
0 (Ω±), (6)

where

B(uε, v) = ε2

1∫
0

(uε−)′(x)v′−(x)dx+

1∫
0

a(x)uε−(x)v−(x)dx

+ ε2

2∫
1

(uε+)′(x)v′+(x)dx+

2∫
1

a(x)uε+(x)v+(x)dx+

2∫
1

b(x)uε−(x− 1)v+(x)dx,

(7)

F (v) =

1∫
0

f(x)v−(x)dx−
1∫
0

b(x)φ(x− 1)v−(x)dx+

2∫
1

f(x)v+(x)dx

=

1∫
0

[f(x)− b(x)φ(x− 1)]v−(x)dx+

2∫
1

f(x)v+(x)dx.

We associate with the bilinear form (7) the natural energy norm, defined as

‖v‖ε := [B(v, v)]1/2 ∀v = (v−, v+) ∈ H1
0 (Ω). (8)

Existence and uniqueness of the solution to (6) follows by the Lax–Milgram lemma. We also
have the energy estimate

‖uε‖ε 6 C{‖f‖0,Ω + ‖φ‖0,Ω}, (9)
where the constant C > 0 depends only on the input data and is independent of ε. The
approximation uεN to uε will come from a finite dimensional subspace VN of H1

0 (Ω) such that
(6) holds for all v ∈ VN , with uε replaced by uεN . Then, by Céa’s lemma

‖uε − uεN‖ε 6 inf
v∈VN
‖uε − v‖ε. (10)

The choice of the subspace VN is discussed in Section 4.
We end this section with the following theorem about the growth of the derivatives of

the solution uε.
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Robust Approximation of SPDDEs 25

Theorem 2.1. Let uε = (uε−, u
ε
+) be the solution to (3) with the data satisfying (5). Then

there exist constants C±, K± > 0 such that for any n = 0, 1, . . .

‖(uε±)(n)‖0,Ω± 6 C±K
n
±max{ε−1, n}n.

Proof. The proof is by induction on n. For n = 0, 1, the result follows from (9). Assuming
the result holds for n, we establish it for n+1 by differentiating the first differential equation
in (3) and using the induction hypothesis as well as the assumptions on the data – see the
proof of [11, Theorem 1] for details. Once we have the result for uε−, we repeat the procedure
for uε+.

3. Regularity of the Solution via Asymptotic Expansions

Theorem 2.1 gives sufficient information for the approximation of uε in the so-called asymp-
totic range of p, i.e. when p > 1/ε. For the pre-asymptotic range we will need the decompo-
sition described in this section. Let M be an integer and write

uε± = w±M + u±BL,M + u±IL,M + r±M , (11)

where w±M denotes the smooth part in Ω±, u±BL,M denotes the boundary layer in Ω±,
u±IL,M denotes the interior/transmission layer in Ω± and r±M denotes the remainder in the
expansion. In the subsections that follow we will analyze each component in (11).

3.1. The Smooth Part

We make the formal ansatz

uε± v
∞∑
i=0

εiu±i

and insert it into the differential equations in (3), equating like powers of ε. This yields

u−0 (x) =
f(x)− b(x)φ(x− 1)

a(x)
, x ∈ (0, 1) (12)

u+
0 (x) =

f(x)− b(x)u−0 (x− 1)

a(x)
, x ∈ (1, 2), (13)

u±2j+1(x) = 0, j = 0, 1, 2, . . . , (14)

u±2j+2(x) =
(u±2j)

′′(x)

a(x)
, j = 0, 1, 2, . . . . (15)

We then define

w±M =
M∑
i=0

ε2iu±2i(x), (16)

and we note that, with
Lεu := −ε2u′′(x) + a(x)u(x),

we have

Lεw
−
M − (f(x)− b(x)φ(x− 1)) = ε2M+2(u−2M)′′, (17)

Lεw
+
M − (f(x)− b(x)u0

−(x− 1)) = ε2M+2(u+
2M)′′. (18)
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We see that as ε → 0, w±M defined by (16) satisfies the differential equations in (3) but
neither the boundary conditions at 0 and 2, nor the interface conditions at 0. To correct
this, we introduce boundary layer functions in the next subsection.

We have the following result regarding the regularity of w±M .

Theorem 3.1. There exist constants C,K1, K2 > 0, independent of ε and depending only
on the data, such that under the assumption 0 < 2MεK1 6 1,

‖(w±M)(n)‖L∞(Ω±) 6 CKn
2 n! ∀n = 0, 1, 2, . . . . (19)

Proof. See [11, Theorem 3].

3.2. The Boundary Layers

Boundary layers u±BL,M are introduced to make up for the fact that the smooth part w±M does
not, in general, satisfy the appropriate boundary conditions (cf. (3)). They are defined via

Lεu
±
BL,M = 0 in Ω±,

u−BL,M(0) = −w−M(0),

u−BL,M(1) = u+
BL,M(1),

(u−BL,M)′(1) = (u+
BL,M)′(1),

u+
BL,M(2) = −w+

M(2).

(20)

The following result gives pointwise bounds on the boundary layer functions and their deriva-
tives.

Theorem 3.2. Let u±BL,M satisfy (20). Then,

|(u−BL,M)(n)(x)| 6 CKn
3 max{n, ε−1}ne−αx/ε ∀n = 0, 1, 2, . . . ,

|(u+
BL,M)(n)(x)| 6 CKn

4 max{n, ε−1}ne−α(2−x)/ε ∀n = 0, 1, 2, . . . ,

with C,K3, K4 > 0 independent of ε and depending only on the data.

Proof. The proof is a direct consequence of [11, Theorem 5]. Indeed, due to the homogeneous
transmission conditions

u−BL,M(1) = u+
BL,M(1), (u−BL,M)′(1) = (u+

BL,M)′(1)

at x = 1, we can write
u±BL,M = −w−M(0)u−ε − w+

M(2)u+
ε ,

where (with the notation of [11]) u−ε and u+
ε are the smooth solutions of

Lεu
−
ε = 0 in Ω,

u−ε (0) = 1,

u−ε (2) = 0,

and


Lεu

+
ε = 0 in Ω,

u+
ε (0) = 0,

u+
ε (2) = 1.

Since the assumptions on the data guarantee that

|w−M(0)|+ |w+
M(2)| 6 C,

for some C > 0 independent of ε, we conclude by the estimate (15) (resp. (16)) of [11] on
u−ε (resp. u+

ε ).
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3.3. The Interior/Interface Layers

Due to (13)–(15) and since the derivatives of u−0 and φ(· − 1) do not match at 1, inte-
rior/interface layers appear there (see also Figure 1). This phenomenon does not occur in
[17] but is encountered in [16] in a slightly different context. Nevertheless as was shown in
[16], these interior/interface layers behave just like the boundary layers and are defined via

Lεu
±
IL,M = 0 in Ω±,

u−IL,M(0) = 0,

u+
IL,M(1)− u−IL,M(1) = −(w+

M(1)− w−M(1)),

(u+
IL,M)′(1)− (u−IL,M)′(1) = −((w+

M)′(1)− (w−M)′(1)),

u+
IL,M(2) = 0.

(21)

Analogous to Theorem 3.2, we have the following.

Theorem 3.3. Let u±IL,M satisfy (21). Then,

|(u−IL,M)(n)(x)| 6 CKn
5 max{n, ε−1}ne−α(1−x)/ε ∀n = 0, 1, 2, . . . , (22)

|(u+
IL,M)(n)(x)| 6 CKn

6 max{n, ε−1}ne−α(x−1)/ε ∀n = 0, 1, 2, . . . ,

with C,K5, K6 > 0 independent of ε and depending only on the data.

Proof. Again the assumptions on the data (see the proof of Theorem 3.2) imply

|w+
M(1)− w−M(1)|+ |(w+

M)′(1)− (w−M)′(1)| 6 C,

for some C > 0 independent of ε. Accordingly uIL,M is a superposition of v and w via

uIL,M = −(w+
M(1)− w−M(1))v − ((w+

M)′(1)− (w−M)′(1))w,

where v and w are the respective solutions of

Lεv
± = 0 in Ω±,

v−(0) = 0,

v+(1)− v−(1) = 1,

(v+)′(1)− (v−)′(1) = 0,

v+(2) = 0

(23)

and 

Lεw
± = 0 in Ω±,

w−(0) = 0,

w+(1)− w−(1) = 0,

(w+)′(1)− (w−)′(1) = 1,

w+(2) = 0.

If we show that v+(1), v−(1), w+(1), w−(1) are uniformly bounded (with respect to ε), then
again the proof finishes by applying [11, Theorem 5].
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These boundedness results are proved by using the maximum principle. Indeed denote
by H the function

H(x) =

{
0 if x < 1,
1 if x > 1.

Then we see that v −H is the smooth (i.e. H2(0, 2)) solution of
−Lε(v −H) = aH > 0 in Ω,

(v −H)(0) = 0,

(v −H)(2) = −1.

Hence by the maximum principle (see for instance [5, Corollary 3.2]), we get

sup
Ω

(v −H) 6 0,

or equivalently
v 6 H in Ω.

In the same manner, taking H̃ = H − 1 we see that v − H̃ is the smooth solution of
−Lε(v −H) = aH̃ 6 0 in Ω,

(v − H̃)(0) = 1,

(v −H)(2) = 0.

Again by the maximum principle, we get

inf
Ω

(v − H̃) > 0,

or equivalently
v > H̃ in Ω.

We have shown that
H − 1 6 v 6 H in Ω.

Therefore we have proved that

−1 6 v−(1) 6 0 and 0 6 v+(1) 6 1.

By using the function G defined by

G(x) =

{
0 if x < 1,
x− 1 if x > 1,

we prove, exactly as before, that

G− 1 6 w 6 G in Ω,

and consequently
−1 6 w−(1) 6 0 and − 1 6 w+(1) 6 0.
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3.4. The Remainder

Finally, we define the remainder via (11) as

r±M = uε± − w±M − u
±
BL,M − u

±
IL,M , (24)

and note that

r−M(0) = uε−(0)− w−M(0)− u−BL,M(0)− u−IL,M(0) = 0,

r+
M(2) = uε+(2)− w+

M(2)− u+
BL,M(2)− u+

IL,M(2) = 0.

The next theorem establishes that the energy norm of the remainder is exponentially (in ε)
small.

Theorem 3.4. The remainder, as defined by (24), satisfies(∫ 2

0

(ε2|r′M |2 + a(x)|rM |2) dx

)1/2

6 C1(εK(2M + 1))2M+1, (25)

with K = max{Kb, Kφ, Kf} which is clearly independent of ε and M ; while C1 is a positive
constant (also independent of ε and M) that depends on the constant C appearing in (5) and
on α appearing in (2).

Proof. By (3), (17) and (21) we note that

‖Lεr−M‖0,Ω− = ‖Lεw−M − Lεu
ε
−‖0,Ω−

= ε2M+2‖f − bφ(· − 1)‖0,Ω− .

6 ε2M+2
(
‖f (2M+1)‖0,Ω− + ‖(bφ(· − 1))(2M+1)‖0,Ω−

)
.

Leibniz’s rule yields

‖(bφ(· − 1))(2M+1)‖0,Ω− 6
2M+1∑
j=0

(
2M + 1

j

)
‖b(j)‖L∞(Ω−)‖φ(2M+1−j)‖L∞(−1,0).

Hence by (5) we get

‖(bφ(· − 1))(2M+1)‖0,Ω− 6 C2

2M+1∑
j=0

(
2M + 1

j

)
Kj
bK

2M+1−j
φ j!(2M + 1− j)!

6 C2(Kb +Kφ)2M+1(2M + 1)!,

because
(

2M+1
j

)
= (2M+1)!

j!(2M+1−j)! . Using the above estimates and again (5), we get

‖Lεr−M‖0,Ω− 6 Cε2M+2K2M+1(2M + 1)!

6 C(εK(2M + 1))2M+1, (26)

with K = max{Kb, Kφ, Kf}. Analogously, from (18) we get

‖Lεr+
M‖0,Ω+ = ‖Lεw+

M − Lεu
ε
+‖0,Ω+

6 ε2M+2
(
‖f (2M+1)‖0,Ω+ + ‖(bu0

−)(2M+1)‖0,Ω+

)
.
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Since u0
− = f(x)−b(x)φ(x−1)

a(x)
, we arrive at the same conclusion as above, namely,

‖Lεr+
M‖0,Ω+ 6 C2(εK(2M + 1))2M+1, (27)

with C2 > 0 depending on the constant C appearing in (5). Combining (26) and (27) we get

‖LεrM‖0,Ω 6 max{C,C2}(εK(2M + 1))2M+1. (28)

Green’s formula and the fact that rM satisfies the homogeneous boundary and interface
conditions yield ∫ 2

0

(ε2|r′M |2 + a(x)|rM |2) dx =

∫ 2

0

(LεrM)rM dx.

Hence by Cauchy–Schwarz’s inequality and the assumption a(x) > α > 0 we find

‖rM‖0,Ω 6
1

α
‖LεrM‖0,Ω.

Using this estimate in the previous identity and (28) we get the desired result.

4. The Approximation of the Solution

We begin this section with the definition of the finite dimensional subspace VN . Let Πp(I)
be the set of polynomials on I ⊂ R of degree less than or equal to p and let the spectral
boundary layer mesh ∆ be given by

∆ =

{
{0,1,2} when κpε > 1,
{0, κpε, 1− κpε, 1, 1 + κpε, 2− κpε, 2} when κpε < 1.

We then define
VN(∆) =

{
v ∈ H1

0 (Ω) : v|Ij ∈ Πp(Ij) ∀j ∈ ∆
}
, (29)

where Ij is the jth subinterval in the mesh ∆ (cf. (4)). That is, the above space consists of
all H1

0 functions defined on Ω, whose restriction to each subinterval Ij in the mesh ∆ is a
polynomial of degree p. It follows that

N = dimVN =

{
2p− 1 when κpε > 1,
6p− 1 when κpε < 1,

(30)

which is referred to as the number of degrees of freedom.
The lemma that follows is proved using Stirling’s formula.

Lemma 4.1. Let p ∈ N, λ ∈ (0, 1). Then

(p− λp)!
(p+ λp)!

6
[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
p−2λpe2λp+1.

Proof. Using Stirling’s approximation

√
2πn

(n
e

)n
e

1
12n+1 6 n! 6

√
2πn

(n
e

)n
e

1
12n 6

√
2πn

(n
e

)n
e
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Robust Approximation of SPDDEs 31

for the factorial (cf. [18]), we have

(p− λp)!
(p+ λp)!

6

√
2π(1− λ)p√
2π(1 + λ)p

( (1−λ)p
e

)(1−λ)p

( (1+λ)p
e

)(1+λ)p

e

e
1

12(1+λ)p+1

6
[(1− λ)p](1−λ)p

[(1 + λ)p](1+λ)p
e2λpe1− 1

12(1+λ)p+1

6
[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
p−2λpe2λpe.

We now present our main result.

Theorem 4.2. Let uε be the solution to (3) and uεN ∈ VN(∆) its finite element approx-
imation, with VN given by (29). Then, provided κ is small enough (cf. (34)), there exist
constants C, σ > 0 independent of ε and depending only on the data, such that

‖uε − uεN‖ε 6 CN3/2e−σN .

Proof. The proof is separated into two cases: when κpε > 1 (asymptotic range of p), and
when κpε < 1 (pre-asymptotic range of p).

Case (i): κpε > 1
2
,∆ = {0, 1, 2}.

From [20, Lemma 3.37], we have that there exist interpolants Ipuε− ∈ Πp(0, 1), Ipuε+ ∈
Πp(1, 2) such that

Ipuε−(0) = uε−(0), Ipuε±(1) = uε±(1), Ipuε+(2) = Ipuε+(2),

and

‖uε± − Ipuε±‖2
0,Ω± 6

1

p2

(p− s)!
(p+ s)!

‖(uε±)(s+1)‖2
0,Ω± ∀s = 0, 1, . . . , p, (31)

‖(uε± − Ipuε±)′‖2
0,Ω± 6

(p− s)!
(p+ s)!

‖(uε±)(s+1)‖2
0,Ω± ∀s = 0, 1, . . . , p. (32)

Choose λp− 1 < s 6 λp for some λ ∈ (0, 1) to be selected shortly. Then since κpε > 1, we
have from Theorem 2.1,

‖(uε±)(s+1)‖2
0,Ω± 6 C±K

2(s+1)
± max{ε−1, s+ 1}2(s+1) 6 C±K

2(λp+1)
± (λp+ 1)2(λp+1),

provided κ 6 λ. Hence, from (31), (32) and the above, we get with the aid of Lemma 4.1,

‖uε± − Ipuε±‖2
0,Ω± 6

1

p2

[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
p−2λpC±(K±e)

2λp(λp+ 1)2
(
λ+

1

p

)2λp

p2(λp+1)

6 p2
[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p(
K±e

(
λ+

1

p

))2λp

.

So if p 6 2eK±, we can take λ = 1/2 and since

λ+
1

p
6

3

2
, 2λp 6 p 6 2eK±,
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we have (
K±e

(
λ+

1

p

))2λp

6
(3K±e

2

)2eK±
.

Hence in that case we obtain

‖uε± − Ipuε±‖2
0,Ω± 6 Ce−σ±p, (33)

with C, σ± > 0 independent of ε.
On the contrary if p > 2eK±, then we choose λ = (2eK±)−1 ∈ (0, 1), that gives

λ+
1

p
6 2λ.

Therefore we see that (
K±e

(
λ+

1

p

))2λp

6 (2K±eλ)2λp = 1

and again we obtain (33).
Note that the constant κ in the definition of the mesh must satisfy

κ 6 (2eK±)−1 (34)

in the second case. In the first case, this condition obviously implies that κ 6 1/2.
The same argument may be repeated for (32), yielding

‖(uε± − Ipuε±)′‖2
0,Ω± 6 Cp2e−σ±p, (35)

so that by (8), (10), (33) and (35) we have the desired result.

Case (ii): κpε < 1
2
, ∆ = {0, κpε, 1− κpε, 1, 1 + κpε, 2− κpε, 2}.

In this case we make use of the results of Section 3: we begin by decomposing uε as in
(11) and choose the expansion order M as the integer part of κpµ − 1, where µ > 0 is a
fixed constant satisfying µK < 1, with K the constant in (25). Then, since κpε < 1/2 and
2M + 1 6 2κpµ− 1 < 2κpµ, we have from (25)

‖rM‖ε 6 C(εK(2M + 1))2M+1 6 C(εK2κpµ)2κpµ 6 C(Kµ)µκp, (36)

which shows, along with stability, that the remainder goes to 0 exponentially fast as p
increases.

The remaining terms in the decomposition (11) will be approximated separately. First,
for w±M we have by [20, Lemma 3.37] that there exist Ipw−M ∈ Πp(0, 1), Ipw+

M ∈ Πp(1, 2) such
that

Ipw−M(0) = w−M(0), Ipw±M(1) = w±M(1), Ipw+
M(2) = Ipw+

M(2),

and

‖w±M − Ipw
±
M‖

2
0,Ω± 6

1

p2

(p− s)!
(p+ s)!

‖(w±M)(s+1)‖2
0,Ω± ∀s = 0, 1, . . . , p, (37)

‖(w±M − Ipw
±
M)′‖2

0,Ω± 6
1

p2

(p− s)!
(p+ s)!

‖(w±M)(s+1)‖2
0,Ω± ∀s = 0, 1, . . . , p. (38)

Using (19), we further have from (38),

‖(w±M − Ipw
±
M)′‖2

0,Ω± 6
1

p2

(p− s)!
(p+ s)!

CK
2(s+1)
2 [(s+ 1)!]2 ∀s = 0, 1, . . . , p,
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so that choosing p/K2 − 1 < s 6 p/K2 and repeating the steps that led to (33) yields

‖(w±M − Ipw
±
M)′‖2

0,Ω± 6 Ce−β±p, (39)

for some constants C, β± > 0 independent of ε. The same argument works for (37) and we
arrive at

‖w±M − Ipw
±
M‖

2
0,Ω± 6 Ce−β±p. (40)

We next approximate the boundary and interior/interface layers: since the steps are
almost identical for all the terms u±BL,M , u

±
IL,M , we will only provide details for the approx-

imation of u+
IL,M , which will be achieved by polynomials of degree p on [1, 1 + κpε] and by

polynomials of degree 1 on [1 + κpε, 2]. From [20, Lemma 3.37], we have that there exists
Ipu+

IL,M ∈ Πp(1, 1 + κpε), such that

Ipu+
IL,M(1) = u+

IL,M(1), Ipu+
IL,M(1 + κpε) = u+

IL,M(1 + κpε),

and

‖u+
IL,M − Ipu

+
IL,M‖

2
0,[1,κpε] 6 (κpε)2s 1

p2

(p− s)!
(p+ s)!

‖(u+
IL,M)(s+1)‖2

0,[1,κpε] ∀s = 0, 1, . . . , p, (41)

‖(u+
IL,M − Ipu

+
IL,M)′‖2

0,[1,κpε] 6 (κpε)2s (p− s)!
(p+ s)!

‖(u+
IL,M)(s+1)‖2

0,[1,κpε] ∀s = 0, 1, . . . , p. (42)

From (22) we see that

‖(u+
IL,M)(s+1)‖2

0,[1,κpε] 6 κpεCK
2(s+1)
4 max{s+ 1, ε−1}2(s+1) 6 κpεCK

2(s+1)
4 ε−(2s+1),

so (41) becomes

‖u+
IL,M − Ipu

+
IL,M‖

2
0,[1,κpε] 6 (κpε)2s 1

p2

(p− s)!
(p+ s)!

κpεCK
2(s+1)
4 ε−(2s+1)

6 CK
2(s+1)
4 (κp)2s+1 1

p2

(p− s)!
(p+ s)!

.

Choosing λp− 1 < s 6 λp for some λ ∈ (0, 1) to be selected shortly and using Lemma 4.1,
we further get

‖u+
IL,M − Ipu

+
IL,M‖

2
0,[1,κpε] 6 CK

2(λp+1)
4 (κp)2λp+1

[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
p−2λpe2λp

6 CK2
4eκp

[(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
(eκK4)2λp

6 Cpe−γp, (43)

where (34) was used and γ = |ln q|, q = (1−λ)(1−λ)

(1+λ)(1+λ)
< 1. Repeating the above argument for

(42) we arrive at
‖(u+

IL,M − Ipu
+
IL,M)′‖2

0,[1,κpε] 6 Cp3ε−1e−γp. (44)
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Now, on [1 + κpε, 2] the function u+
IL,M is already exponentially small, hence we will approx-

imate it by its linear interpolant I1u
+
IL,M ∈ Π1(1 + κpε, 2). We have

‖(u+
IL,M)′‖2

0,[1+κpε,2] =

2∫
1+κpε

[(u+
IL,M)′]2dx 6 Cε−2(1− κpε) max

x∈[1+κpε,2]
{e−2α(x−1)/ε}

6 Cε−2e−2α(κpε)/ε 6 Cε−2e−2ακp,

so that

‖(u+
IL,M − I1u

+
IL,M)′‖2

0,[1+κpε,2] 6 ‖(u+
IL,M)′‖2

0,[1+κpε,2] + ‖(I1u
+
IL,M)′‖2

0,[1+κpε,2]

6 Cε−2e−2ακp. (45)

Similarly, we get
‖u+

IL,M − I1u
+
IL,M‖

2
0,[1+κpε,2] 6 Ce−2ακp, (46)

and by combining (43), (44), (45) and (46) we obtain

‖u+
IL,M − Iu

+
IL,M‖

2
0,Ω+

6 Ce−σp, ‖(u+
IL,M − Iu

+
IL,M)′‖2

0,Ω+
6 Cε−2e−σp, (47)

for some constants C, σ > 0 independent of ε and with

I =

{
Ip on [1, 1 + κpε],
I1 on [1 + κpε, 2].

As mentioned earlier, the approximation of the terms u−IL,M , u
±
BL,M is identical to the

above, hence

‖u−IL,M − Iu
−
IL,M‖

2
0,Ω+

6 Ce−σp, ‖(u−IL,M − Iu
−
IL,M)′‖2

0,Ω+
6 Cε−2e−σp, (48)

‖u±BL,M − Iu
±
BL,M‖

2
0,Ω± 6 Ce−σp, ‖(u±BL,M − Iu

±
IL,M)′‖2

0,Ω+
6 Cε−2e−σp. (49)

Therefore, with Iε defined as

Iεuε := Ipw±M + Iu±BL,M + Iu±IL,M ,

we have from (11),

‖uε − Iεuε‖2
0,Ω± = ‖(w±M + u±BL,M + u±IL,M + r±M)− (Ipw±M + Iu±BL,M + Iu±IL,M)‖2

0,Ω±

6 ‖w±M − Ipw
±
M‖

2
0,Ω± + ‖u±BL,M − Iu

±
BL,M‖

2
0,Ω±

+ ‖u±IL,M − Iu
±
IL,M‖

2
0,Ω± + ‖r±M‖

2
0,Ω±

6 Cpe−σp, (50)

where (36), (40), (47), (48) and (49) were used. Similarly, using (36), (39), (47), (48) and
(49), we get

ε2‖(uε − Iεuε)′‖2
0,Ω± 6 ‖(w±M ,−Ipw

±
M)′‖2

0,Ω± + ‖(u±BL,M − Iu
±
BL,M)′‖2

0,Ω±

+ ‖(u±IL,M − Iu
±
IL,M)′‖2

0,Ω± + ‖(r±M)′‖2
0,Ω±

6 Cp3e−σp. (51)

From (8), (10), (50) and (51) we get the desired result.
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Figure 3. Energy norm convergence for the hp version. Left: Log-log scale. Right: Semi-log scale.

5. Numerical Results

We now present the results of numerical computations verifying our theoretical findings, as
well as comparing the proposed method to other commonly used ones found in the literature.
We consider problem (1) with a(x) = 5, b(x) = −1, f(x) = 1, L = 0, φ(x) = 0, and exact
solution known; knowledge of the exact solution makes our computations reliable. We will
be interested in the percentage relative error in the energy norm

E := 100× ‖u
ε − uεFEM‖ε
‖uε‖ε

,

and we will be plotting it versus the number of degrees of freedom N (cf. (30)) in log-log
and semi-log scales.

We use the proposed method on the spectral boundary layer mesh ∆ given by (4), with
κ = 1 and p = 1, . . . , 8. Figure 3 shows the performance of the method, for several values
of ε; the robustness and exponential convergence are readily visible. In fact, as ε → 0, the
method not only does not deteriorate (i.e. it is robust), it actually performs better – see, e.g.,
[20] for an explanation of this phenomenon for non-delay singularly perturbed problems.

In Figure 4 we show the performance of various methods for ε = 10−6: the h version
with piecewise linears on a uniform mesh (known not to converge uniformly), the h version
with polynomials of degree 1 and 2, on a (piecewise uniform) Shishkin mesh [21], and the
proposed hp method on the spectral boundary layer mesh. As expected, the first method
does not perform well, since the mesh does not incorporate ε in its definition. The h version
on the Shishkin mesh is performing uniformly, at the quasi-optimal rate O((N−1 lnN)p).
This figure clearly shows how competitive the hp FEM is, even for this class of problems.

6. Conclusions

We have proved the robustness and exponential convergence rate of an hp finite element
method on spectral boundary layer meshes, applied to a second order SPDDE. The problem
was first written as a singularly perturbed transmission problem, whose solution admits
an asymptotic expansion that includes a smooth part, a boundary layer part, an inte-
rior/interface layer and a remainder. Bounds on the derivatives of each part allowed us
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36 Serge Nicaise, Christos Xenophontos

Figure 4. Comparison of various methods, for ε = 10−6.

to prove the desired result. The current work extends our previously published results [16],
to the case of SPDDEs, which involve interface layers due to the fact that u−0 and φ(· − 1)
(cf. (12)) do not match at the interface point x = 1. Numerical computations agree with
our theoretical findings and provide evidence that place the proposed method among the
state-of-the-art for SPDDEs.
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